Jennifer Reimers, Ronna C. Turner, Jorge N. Tendeiro, Wen-Juo Lo, Elizabeth Keiffer
{"title":"Performance of Nonparametric Person-Fit Statistics with Unfolding versus Dominance Response Models","authors":"Jennifer Reimers, Ronna C. Turner, Jorge N. Tendeiro, Wen-Juo Lo, Elizabeth Keiffer","doi":"10.1080/15366367.2023.2165891","DOIUrl":null,"url":null,"abstract":"ABSTRACTPerson-fit analyses are commonly used to detect aberrant responding in self-report data. Nonparametric person fit statistics do not require fitting a parametric test theory model and have performed well compared to other person-fit statistics. However, detection of aberrant responding has primarily focused on dominance response data, thus the effectiveness of person-fit statistics in detecting different aberrant behaviors in ideal point data is unclear. This study compares the performance of nonparametric person-fit statistics in unfolding and dominance model contexts. Results for dominance data indicate that increases in detection rates depend, among other factors, on type of aberrant responding and person-fit statistic used. The detection of aberrant responses in ideal point data was ineffective using four nonparametric person-fit statistics, with slightly higher type I error and power less than 0.25. Additional research is needed to identify or develop nonparametric or parametric person-fit statistics effective for aberrant behavior exhibited in ideal point data.KEYWORDS: Nonparametricperson-fit statisticsaberrantideal-pointdominanceresponse models Disclosure statementNo potential conflict of interest was reported by the authors.","PeriodicalId":476852,"journal":{"name":"Measurement: Interdisciplinary Research & Perspective","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Interdisciplinary Research & Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15366367.2023.2165891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTPerson-fit analyses are commonly used to detect aberrant responding in self-report data. Nonparametric person fit statistics do not require fitting a parametric test theory model and have performed well compared to other person-fit statistics. However, detection of aberrant responding has primarily focused on dominance response data, thus the effectiveness of person-fit statistics in detecting different aberrant behaviors in ideal point data is unclear. This study compares the performance of nonparametric person-fit statistics in unfolding and dominance model contexts. Results for dominance data indicate that increases in detection rates depend, among other factors, on type of aberrant responding and person-fit statistic used. The detection of aberrant responses in ideal point data was ineffective using four nonparametric person-fit statistics, with slightly higher type I error and power less than 0.25. Additional research is needed to identify or develop nonparametric or parametric person-fit statistics effective for aberrant behavior exhibited in ideal point data.KEYWORDS: Nonparametricperson-fit statisticsaberrantideal-pointdominanceresponse models Disclosure statementNo potential conflict of interest was reported by the authors.