On the Unique Continuation Property for a Coupled System of Third-order Nonlinear Schrodinger Equations

Yue Zhou, Jie Yang
{"title":"On the Unique Continuation Property for a Coupled System of Third-order Nonlinear Schrodinger Equations","authors":"Yue Zhou, Jie Yang","doi":"10.56557/ajomcor/2023/v30i48400","DOIUrl":null,"url":null,"abstract":"In this paper, we study the unique continuation properties for a coupled system of third-order nonlinear Schrodinger equations and show the Carleman estimates of L2 and Lp (p > 2) types, as well as exponential decay properties of the solutions. As a consequence we obtain that if (\\(\\mathit{u}\\), \\(\\mathit{w}\\)) = (\\(\\mathit{u}\\)(\\(\\mathit{x}\\), \\(\\mathit{t}\\)), \\(\\mathit{w}\\)(\\(\\mathit{x}\\), \\(\\mathit{t}\\))) is a suffciently smooth solution of the system such that there exists \\(\\mathit{l}\\) \\(\\in\\) \\(\\mathbb{R}\\) with supp \\(\\mathit{u}\\)(.,tj) \\(\\subseteq\\)(\\(\\mathit{l}\\), \\(\\infty\\)) (\\(\\mathit{or}\\)(-\\(\\infty\\), \\(\\mathit{l}\\))) and supp \\(\\mathit{w}\\)(.,tj) \\(\\subseteq\\)(\\(\\mathit{l}\\), \\(\\infty\\)) (\\(\\mathit{or}\\)(-\\(\\infty\\), \\(\\mathit{l}\\))), for \\(\\mathit{j}\\) = 1,2 (t1 \\(\\neq\\) t2), then \\(\\mathit{u}\\) \\(\\equiv\\) 0 and \\(\\mathit{w}\\) \\(\\equiv\\) 0.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2023/v30i48400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the unique continuation properties for a coupled system of third-order nonlinear Schrodinger equations and show the Carleman estimates of L2 and Lp (p > 2) types, as well as exponential decay properties of the solutions. As a consequence we obtain that if (\(\mathit{u}\), \(\mathit{w}\)) = (\(\mathit{u}\)(\(\mathit{x}\), \(\mathit{t}\)), \(\mathit{w}\)(\(\mathit{x}\), \(\mathit{t}\))) is a suffciently smooth solution of the system such that there exists \(\mathit{l}\) \(\in\) \(\mathbb{R}\) with supp \(\mathit{u}\)(.,tj) \(\subseteq\)(\(\mathit{l}\), \(\infty\)) (\(\mathit{or}\)(-\(\infty\), \(\mathit{l}\))) and supp \(\mathit{w}\)(.,tj) \(\subseteq\)(\(\mathit{l}\), \(\infty\)) (\(\mathit{or}\)(-\(\infty\), \(\mathit{l}\))), for \(\mathit{j}\) = 1,2 (t1 \(\neq\) t2), then \(\mathit{u}\) \(\equiv\) 0 and \(\mathit{w}\) \(\equiv\) 0.
三阶非线性薛定谔方程耦合系统的唯一延拓性质
本文研究了一类三阶非线性薛定谔方程耦合系统的唯一延拓性质,并给出了L2和Lp (p >2)解的类型,以及解的指数衰减特性。因此,我们得到如果(\(\mathit{u}\), \(\mathit{w}\)) = (\(\mathit{u}\) (\(\mathit{x}\), \(\mathit{t}\)), \(\mathit{w}\) (\(\mathit{x}\), \(\mathit{t}\)))是系统的一个足够光滑的解,使得存在\(\mathit{l}\)\(\in\)\(\mathbb{R}\)与supp \(\mathit{u}\) (.,tj) \(\subseteq\) (\(\mathit{l}\), \(\infty\)) (\(\mathit{or}\) (- \(\infty\),\(\mathit{l}\)))和supp \(\mathit{w}\) (.,tj) \(\subseteq\) (\(\mathit{l}\), \(\infty\)) (\(\mathit{or}\) (- \(\infty\), \(\mathit{l}\))),对于\(\mathit{j}\) = 1,2 (t1 \(\neq\) t2),则\(\mathit{u}\)\(\equiv\) 0和\(\mathit{w}\)\(\equiv\) 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信