Further remarks on permissible covariance structures for simultaneous retention of BLUEs in linear models

IF 0.3 Q4 MATHEMATICS
Simo Puntanen, Stephen Haslett, Jarkko Isotalo, Augustyn Markiewicz
{"title":"Further remarks on permissible covariance structures for simultaneous retention of BLUEs in linear models","authors":"Simo Puntanen, Stephen Haslett, Jarkko Isotalo, Augustyn Markiewicz","doi":"10.12697/acutm.2023.27.09","DOIUrl":null,"url":null,"abstract":"We consider the partitioned linear model M12(V0) = { y, X1β1 + X2 β2, V0 } and the corresponding small model M1(V0) = { y, X1β1 , V0 } . We define the set V1/12 of nonnegative definite matrices V such that every representation of the best linear unbiased estimator, BLUE, of μ1 = X1β1 under M12(V0) remains BLUE under M12(V) . Correspondingly, we can characterize the set V1 of matrices V such that every BLUE of μ1 = X1β1 under M1(V0) remains BLUE under M1(V). In this paper we focus on the mutual relations between the sets V1 and V1/12 .","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"13 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2023.27.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the partitioned linear model M12(V0) = { y, X1β1 + X2 β2, V0 } and the corresponding small model M1(V0) = { y, X1β1 , V0 } . We define the set V1/12 of nonnegative definite matrices V such that every representation of the best linear unbiased estimator, BLUE, of μ1 = X1β1 under M12(V0) remains BLUE under M12(V) . Correspondingly, we can characterize the set V1 of matrices V such that every BLUE of μ1 = X1β1 under M1(V0) remains BLUE under M1(V). In this paper we focus on the mutual relations between the sets V1 and V1/12 .
关于线性模型中同时保留蓝调的允许协方差结构的进一步说明
考虑分块线性模型M12(V0) = {y, X1β1 + X2 β2, V0},对应的小模型M1(V0) = {y, X1β1, V0}。我们定义了非负定矩阵V的集合V1/12,使得μ1 = X1β1在M12(V0)下的最佳线性无偏估计BLUE在M12(V)下的每一个表示都是BLUE。相应地,我们可以刻画矩阵V的集合V1,使得μ1 = X1β1在M1(V0)下的每一个BLUE在M1(V)下都是BLUE。本文主要讨论集合V1和集合V1/12之间的相互关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信