Smooth fans that are endpoint rigid

IF 0.6 Q3 MATHEMATICS
Rodrigo Hernández-Gutiérrez, Logan C. Hoehn
{"title":"Smooth fans that are endpoint rigid","authors":"Rodrigo Hernández-Gutiérrez, Logan C. Hoehn","doi":"10.4995/agt.2023.17922","DOIUrl":null,"url":null,"abstract":"Let X be a smooth fan and denote its set of endpoints by E(X). Let E be one of the following spaces: the natural numbers, the irrational numbers, or the product of the Cantor set with the natural numbers. We prove that there is a smooth fan X such that E(X) is homeomorphic to E and for every homeomorphism h : X → X , the restriction of h to E(X) is the identity. On the other hand, we also prove that if X is any smooth fan such that E(X) is homeomorphic to complete Erdős space, then X is necessarily homeomorphic to the Lelek fan; this adds to a 1989 result by Włodzimierz Charatonik.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"17 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2023.17922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let X be a smooth fan and denote its set of endpoints by E(X). Let E be one of the following spaces: the natural numbers, the irrational numbers, or the product of the Cantor set with the natural numbers. We prove that there is a smooth fan X such that E(X) is homeomorphic to E and for every homeomorphism h : X → X , the restriction of h to E(X) is the identity. On the other hand, we also prove that if X is any smooth fan such that E(X) is homeomorphic to complete Erdős space, then X is necessarily homeomorphic to the Lelek fan; this adds to a 1989 result by Włodzimierz Charatonik.
端点刚性的光滑风扇
设X是一个光滑扇形,用E(X)表示它的端点集合。设E为下列空间之一:自然数,无理数,或康托集合与自然数的乘积。我们证明了有一个光滑扇形X使得E(X)同胚于E,并且对于每一个同胚h: X→X, h对E(X)的限制是恒等式。另一方面,我们也证明了如果X是任意光滑扇,使得E(X)同胚于完全Erdős空间,则X必然同胚于leelek扇;这是对Włodzimierz Charatonik 1989年的结果的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
38
审稿时长
15 weeks
期刊介绍: The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信