{"title":"Gradient Estimates for a Class of Elliptic and Parabolic Equations on Riemannian Manifolds","authors":"Jie Wang","doi":"10.1007/s11464-021-0420-0","DOIUrl":null,"url":null,"abstract":"Let (N, g) be a complete noncompact Riemannian manifold with Ricci curvature bounded from below. In this paper, we study the gradient estimates of positive solutions to a class of nonlinear elliptic equations $$\\Delta u(x) + a(x)u(x)\\log u(x) + b(x)u(x) = 0$$ on N where a(x) is C2-smooth while b(x) is C1 and its parabolic counterparts $$\\left({\\Delta - {\\partial \\over {\\partial t}}} \\right)u(x,t) + a(x,t)u(x,t)\\log u(x,t) + b(x,t)u(x,t) = 0$$ on N × [0, ∞) where a(x, t) and b(x, t) are C2 with respect to x ∊ N while are C1 with respect to the time t. In contrast with lots of similar results, here we do not assume the coefficients of equations are constant, so our results can be viewed as extensions to several classical estimates.","PeriodicalId":50429,"journal":{"name":"Frontiers of Mathematics in China","volume":"307 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Mathematics in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11464-021-0420-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let (N, g) be a complete noncompact Riemannian manifold with Ricci curvature bounded from below. In this paper, we study the gradient estimates of positive solutions to a class of nonlinear elliptic equations $$\Delta u(x) + a(x)u(x)\log u(x) + b(x)u(x) = 0$$ on N where a(x) is C2-smooth while b(x) is C1 and its parabolic counterparts $$\left({\Delta - {\partial \over {\partial t}}} \right)u(x,t) + a(x,t)u(x,t)\log u(x,t) + b(x,t)u(x,t) = 0$$ on N × [0, ∞) where a(x, t) and b(x, t) are C2 with respect to x ∊ N while are C1 with respect to the time t. In contrast with lots of similar results, here we do not assume the coefficients of equations are constant, so our results can be viewed as extensions to several classical estimates.
期刊介绍:
Frontiers of Mathematics in China provides a forum for a broad blend of peer-reviewed scholarly papers in order to promote rapid communication of mathematical developments. It reflects the enormous advances that are currently being made in the field of mathematics. The subject areas featured include all main branches of mathematics, both pure and applied. In addition to core areas (such as geometry, algebra, topology, number theory, real and complex function theory, functional analysis, probability theory, combinatorics and graph theory, dynamical systems and differential equations), applied areas (such as statistics, computational mathematics, numerical analysis, mathematical biology, mathematical finance and the like) will also be selected. The journal especially encourages papers in developing and promising fields as well as papers showing the interaction between different areas of mathematics, or the interaction between mathematics and science and engineering.