Many Hamiltonian subsets in large graphs with given density

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Stijn Cambie, Jun Gao, Hong Liu
{"title":"Many Hamiltonian subsets in large graphs with given density","authors":"Stijn Cambie, Jun Gao, Hong Liu","doi":"10.1017/s0963548323000317","DOIUrl":null,"url":null,"abstract":"Abstract A set of vertices in a graph is a Hamiltonian subset if it induces a subgraph containing a Hamiltonian cycle. Kim, Liu, Sharifzadeh, and Staden proved that for large $d$ , among all graphs with minimum degree $d$ , $K_{d+1}$ minimises the number of Hamiltonian subsets. We prove a near optimal lower bound that takes also the order and the structure of a graph into account. For many natural graph classes, it provides a much better bound than the extremal one ( $\\approx 2^{d+1}$ ). Among others, our bound implies that an $n$ -vertex $C_4$ -free graph with minimum degree $d$ contains at least $n2^{d^{2-o(1)}}$ Hamiltonian subsets.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000317","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A set of vertices in a graph is a Hamiltonian subset if it induces a subgraph containing a Hamiltonian cycle. Kim, Liu, Sharifzadeh, and Staden proved that for large $d$ , among all graphs with minimum degree $d$ , $K_{d+1}$ minimises the number of Hamiltonian subsets. We prove a near optimal lower bound that takes also the order and the structure of a graph into account. For many natural graph classes, it provides a much better bound than the extremal one ( $\approx 2^{d+1}$ ). Among others, our bound implies that an $n$ -vertex $C_4$ -free graph with minimum degree $d$ contains at least $n2^{d^{2-o(1)}}$ Hamiltonian subsets.
给定密度的大图中的许多哈密顿子集
一个图中的顶点集合如果能引出一个包含哈密顿循环的子图,则称为哈密顿子集。Kim, Liu, Sharifzadeh, and Staden证明了对于大$d$,在所有具有最小度$d$的图中,$K_{d+1}$使哈密顿子集的个数最小。我们证明了一个考虑图的顺序和结构的近似最优下界。对于许多自然图类,它提供了一个比极值界($\approx 2^{d+1}$)更好的界。其中,我们的界表明一个$n$顶点$C_4$最小度$d$的无图包含至少$n2^{d^{2- 0(1)}}$哈密顿子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信