Nonlocal advection diffusion equations and the two-slit experiment in quantum mechanics

IF 0.8 4区 数学 Q2 MATHEMATICS
Glenn Webb
{"title":"Nonlocal advection diffusion equations and the two-slit experiment in quantum mechanics","authors":"Glenn Webb","doi":"10.58997/ejde.sp.02.w1","DOIUrl":null,"url":null,"abstract":"We analyze a partial differential equation that models the two-slit experiment of quantum mechanics. The state variable of the equation is the probability density function of particle positions. The equation has a diffusion term corresponding to the random movement of particles, and a nonlocal advection term corresponding to the movement of particles in the transverse directionperpendicular to their forward movement. The model is compared to the Schrodinger equation model of the experiment. The model supports the ensemble interpretation of quantum mechanics.
 See also https://ejde.math.txstate.edu/special/02/w1/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58997/ejde.sp.02.w1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze a partial differential equation that models the two-slit experiment of quantum mechanics. The state variable of the equation is the probability density function of particle positions. The equation has a diffusion term corresponding to the random movement of particles, and a nonlocal advection term corresponding to the movement of particles in the transverse directionperpendicular to their forward movement. The model is compared to the Schrodinger equation model of the experiment. The model supports the ensemble interpretation of quantum mechanics. See also https://ejde.math.txstate.edu/special/02/w1/abstr.html
量子力学中的非局部平流扩散方程与双缝实验
我们分析了一个模拟量子力学双缝实验的偏微分方程。方程的状态变量是粒子位置的概率密度函数。方程有一个扩散项对应于粒子的随机运动,一个非局部平流项对应于粒子在垂直于它们的向前运动的横向运动。将该模型与实验中的薛定谔方程模型进行了比较。该模型支持量子力学的系综解释。 参见https://ejde.math.txstate.edu/special/02/w1/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信