Differentiation on Interval

IF 1 Q1 MATHEMATICS
Noboru Endou
{"title":"Differentiation on Interval","authors":"Noboru Endou","doi":"10.2478/forma-2023-0002","DOIUrl":null,"url":null,"abstract":"Summary This article generalizes the differential method on intervals, using the Mizar system [2], [3], [12]. Differentiation of real one-variable functions is introduced in Mizar [13], along standard lines (for interesting survey of formalizations of real analysis in various proof-assistants like ACL2 [11], Isabelle/HOL [10], Coq [4], see [5]), but the differentiable interval is restricted to open intervals. However, when considering the relationship with integration [9], since integration is an operation on a closed interval, it would be convenient for differentiation to be able to handle derivates on a closed interval as well. Regarding differentiability on a closed interval, the right and left differentiability have already been formalized [6], but they are the derivatives at the endpoints of an interval and not demonstrated as a differentiation over intervals. Therefore, in this paper, based on these results, although it is limited to real one-variable functions, we formalize the differentiation on arbitrary intervals and summarize them as various basic propositions. In particular, the chain rule [1] is an important formula in relation to differentiation and integration, extending recent formalized results [7], [8] in the latter field of research.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Summary This article generalizes the differential method on intervals, using the Mizar system [2], [3], [12]. Differentiation of real one-variable functions is introduced in Mizar [13], along standard lines (for interesting survey of formalizations of real analysis in various proof-assistants like ACL2 [11], Isabelle/HOL [10], Coq [4], see [5]), but the differentiable interval is restricted to open intervals. However, when considering the relationship with integration [9], since integration is an operation on a closed interval, it would be convenient for differentiation to be able to handle derivates on a closed interval as well. Regarding differentiability on a closed interval, the right and left differentiability have already been formalized [6], but they are the derivatives at the endpoints of an interval and not demonstrated as a differentiation over intervals. Therefore, in this paper, based on these results, although it is limited to real one-variable functions, we formalize the differentiation on arbitrary intervals and summarize them as various basic propositions. In particular, the chain rule [1] is an important formula in relation to differentiation and integration, extending recent formalized results [7], [8] in the latter field of research.
区间微分
本文利用Mizar系统[2],[3],[12]推广了区间上的微分方法。实单变量函数的微分在Mizar[13]中被引入,沿着标准的路线(在各种证明辅助中对实分析的形式化进行了有趣的调查,如ACL2 [11], Isabelle/HOL [10], Coq[4],参见[5]),但可微分区间仅限于开区间。然而,当考虑到与积分的关系[9]时,由于积分是在封闭区间上的运算,因此如果微分也能处理封闭区间上的导数,将会很方便。关于闭区间上的可微性,右可微性和左可微性已经形式化了[6],但它们是区间端点处的导数,并没有被证明为区间上的微分。因此,本文在这些结果的基础上,虽然仅限于实单变量函数,但我们将任意区间上的微分形式化,并将其概括为各种基本命题。特别是,链式法则[1]是与微分和积分相关的一个重要公式,扩展了最近在微分和积分研究领域的形式化结果[7],[8]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信