A nonuniform L2-1$_\sigma$/LDG method for the Caputo-Hadamard time-fractional convection-diffusion equation

Zhen Wang
{"title":"A nonuniform L2-1$_\\sigma$/LDG method for the Caputo-Hadamard time-fractional convection-diffusion equation","authors":"Zhen Wang","doi":"10.32513/asetmj/193220082328","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the efficient numerical approach for the time-fractional convection-diffusion equation with Caputo-Hadamard derivative. This method uses the nonuniform L2-1$_\\sigma$ formula for the time-fractional derivative and the local discontinuous Galerkin (LDG) method for the space approximation. In order to analyze the stability and convergence of the algorithm, a new discrete Gronwall inequality related to the discretized model with Caputo-Hadamard derivative is established. The result shows that the method has $\\alpha$-robust, i.e., it remains valid when $\\alpha\\rightarrow 1^-$. Finally, the theoretical results are further verified by a numerical example.","PeriodicalId":484498,"journal":{"name":"Advanced Studies Euro-Tbilisi Mathematical Journal","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Studies Euro-Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/asetmj/193220082328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider the efficient numerical approach for the time-fractional convection-diffusion equation with Caputo-Hadamard derivative. This method uses the nonuniform L2-1$_\sigma$ formula for the time-fractional derivative and the local discontinuous Galerkin (LDG) method for the space approximation. In order to analyze the stability and convergence of the algorithm, a new discrete Gronwall inequality related to the discretized model with Caputo-Hadamard derivative is established. The result shows that the method has $\alpha$-robust, i.e., it remains valid when $\alpha\rightarrow 1^-$. Finally, the theoretical results are further verified by a numerical example.
Caputo-Hadamard时间分数对流扩散方程的非均匀L2-1$_\sigma$/LDG方法
本文研究了具有Caputo-Hadamard导数的时间分数阶对流扩散方程的有效数值解法。该方法使用非均匀L2-1 $_\sigma$公式进行时间分数阶导数,使用局部不连续伽辽金(LDG)方法进行空间逼近。为了分析该算法的稳定性和收敛性,建立了与具有Caputo-Hadamard导数的离散模型相关的一个新的离散Gronwall不等式。结果表明,该方法具有$\alpha$ -鲁棒性,即当$\alpha\rightarrow 1^-$。最后,通过数值算例进一步验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信