A new block preconditioner for weighted Toeplitz regularized least-squares problems

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Fariba Bakrani Balani, Masoud Hajarian
{"title":"A new block preconditioner for weighted Toeplitz regularized least-squares problems","authors":"Fariba Bakrani Balani, Masoud Hajarian","doi":"10.1080/00207160.2023.2272589","DOIUrl":null,"url":null,"abstract":"AbstractWe introduce a new block preconditioner for the solution of weighted Toeplitz regularized least-squares problems written in augmented system form. The proposed preconditioner is obtained based on the new splitting of coefficient matrix which results in an unconditionally convergent stationary iterative method. Spectral analysis of the preconditioned matrix is investigated. In particular, we show that the preconditioned matrix has a very nice eigenvalue distribution which can lead to fast convergence of the preconditioned Krylov subspace methods such as GMRES. Numerical experiments are reported to demonstrate the performance of preconditioner used with (flexible) GMRES method in the solution of augmented system form of weighted Toeplitz regularized least-squares problems.Keywords: PreconditioningSplittingLeast-squares problemsWeighted Toeplitz matricesAMS classification 2010:: 65F1065F50DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2272589","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractWe introduce a new block preconditioner for the solution of weighted Toeplitz regularized least-squares problems written in augmented system form. The proposed preconditioner is obtained based on the new splitting of coefficient matrix which results in an unconditionally convergent stationary iterative method. Spectral analysis of the preconditioned matrix is investigated. In particular, we show that the preconditioned matrix has a very nice eigenvalue distribution which can lead to fast convergence of the preconditioned Krylov subspace methods such as GMRES. Numerical experiments are reported to demonstrate the performance of preconditioner used with (flexible) GMRES method in the solution of augmented system form of weighted Toeplitz regularized least-squares problems.Keywords: PreconditioningSplittingLeast-squares problemsWeighted Toeplitz matricesAMS classification 2010:: 65F1065F50DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript.
加权Toeplitz正则最小二乘问题的一种新的块预条件
摘要针对增广系统形式的加权Toeplitz正则化最小二乘问题,提出了一种新的块预条件。提出了一种基于系数矩阵新分裂的预条件,得到了一种无条件收敛的平稳迭代方法。研究了预条件矩阵的谱分析。特别地,我们证明了预条件矩阵具有非常好的特征值分布,这可以导致预条件Krylov子空间方法(如GMRES)的快速收敛。通过数值实验验证了(柔性)GMRES方法在求解加权Toeplitz正则化最小二乘问题增广系统形式时的预条件的性能。关键词:预条件分裂最小二乘问题加权Toeplitz矩阵ams分类2010::65f1065f50免责声明作为对作者和研究人员的服务,我们提供此版本的已接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。作者对审稿人提出的意见和建设性建议表示感谢,这些意见和建议对提高论文质量具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
72
审稿时长
5 months
期刊介绍: International Journal of Computer Mathematics (IJCM) is a world-leading journal serving the community of researchers in numerical analysis and scientific computing from academia to industry. IJCM publishes original research papers of high scientific value in fields of computational mathematics with profound applications to science and engineering. IJCM welcomes papers on the analysis and applications of innovative computational strategies as well as those with rigorous explorations of cutting-edge techniques and concerns in computational mathematics. Topics IJCM considers include: • Numerical solutions of systems of partial differential equations • Numerical solution of systems or of multi-dimensional partial differential equations • Theory and computations of nonlocal modelling and fractional partial differential equations • Novel multi-scale modelling and computational strategies • Parallel computations • Numerical optimization and controls • Imaging algorithms and vision configurations • Computational stochastic processes and inverse problems • Stochastic partial differential equations, Monte Carlo simulations and uncertainty quantification • Computational finance and applications • Highly vibrant and robust algorithms, and applications in modern industries, including but not limited to multi-physics, economics and biomedicine. Papers discussing only variations or combinations of existing methods without significant new computational properties or analysis are not of interest to IJCM. Please note that research in the development of computer systems and theory of computing are not suitable for submission to IJCM. Please instead consider International Journal of Computer Mathematics: Computer Systems Theory (IJCM: CST) for your manuscript. Please note that any papers submitted relating to these fields will be transferred to IJCM:CST. Please ensure you submit your paper to the correct journal to save time reviewing and processing your work. Papers developed from Conference Proceedings Please note that papers developed from conference proceedings or previously published work must contain at least 40% new material and significantly extend or improve upon earlier research in order to be considered for IJCM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信