Gözde Keskin , Sachin Salunkhe , Gökhan Küçüktürk , Muharrem Pul , Hakan Gürün , Volkan Baydaroğlu
{"title":"Optimization of PMEDM process parameters for B4C and B4C+SiC reinforced AA7075 composites","authors":"Gözde Keskin , Sachin Salunkhe , Gökhan Küçüktürk , Muharrem Pul , Hakan Gürün , Volkan Baydaroğlu","doi":"10.1016/j.jer.2023.09.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Materials</h3><div>With sufficient electrical conductivity can be successfully processed by applying the electrical discharge machining (EDM) method; however, due to the presence of non-conductive particles in composites, which have been produced by adding ceramics particles, problems such as unstable machining, low material removal rate, and high tool wear are observed during the EDM. This study employed powder-mixed electrical discharge machining (PMEDM) by adding electrically conductive nano-size graphite powder into the dielectric liquid to minimize these problems. Moreover, the machinability of AA7075/ B<sub>4</sub>C and AA7075/ B<sub>4</sub>C+SiC composites was evaluated using the Taguchi method. The experimental study used L18 orthogonal array (OA) (21 ×32). ANOVA was employed to obtain significant parameters and percent contributions of variable parameters on the material removal rate (MRR). Reinforcement ratio, current and sintering time applied to the workpiece were chosen as variable parameters. The optimum parameters for MRR were obtained at A1B3C3 (reinforcement ratio= 10%, current= 8 A, sintering time=150 min). According to S/N ratio graphs, increasing the reinforcement ratio leads to a decreased MRR. On the contrary, when the applied current increases, MRR increases. Additionally, analysis results show that the discharge current is the most important parameter affecting MRR. In the morphological examinations, it was understood that the amounts of B<sub>4</sub>C and SiC particles in the composite structure affect the quality of the machined surfaces. It was determined that the surface quality deteriorated with the increase in the amount of SiC and B<sub>4</sub>C in the composite structure and the increase in the discharge current.</div></div>","PeriodicalId":48803,"journal":{"name":"Journal of Engineering Research","volume":"13 1","pages":"Pages 47-56"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307187723002171","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Materials
With sufficient electrical conductivity can be successfully processed by applying the electrical discharge machining (EDM) method; however, due to the presence of non-conductive particles in composites, which have been produced by adding ceramics particles, problems such as unstable machining, low material removal rate, and high tool wear are observed during the EDM. This study employed powder-mixed electrical discharge machining (PMEDM) by adding electrically conductive nano-size graphite powder into the dielectric liquid to minimize these problems. Moreover, the machinability of AA7075/ B4C and AA7075/ B4C+SiC composites was evaluated using the Taguchi method. The experimental study used L18 orthogonal array (OA) (21 ×32). ANOVA was employed to obtain significant parameters and percent contributions of variable parameters on the material removal rate (MRR). Reinforcement ratio, current and sintering time applied to the workpiece were chosen as variable parameters. The optimum parameters for MRR were obtained at A1B3C3 (reinforcement ratio= 10%, current= 8 A, sintering time=150 min). According to S/N ratio graphs, increasing the reinforcement ratio leads to a decreased MRR. On the contrary, when the applied current increases, MRR increases. Additionally, analysis results show that the discharge current is the most important parameter affecting MRR. In the morphological examinations, it was understood that the amounts of B4C and SiC particles in the composite structure affect the quality of the machined surfaces. It was determined that the surface quality deteriorated with the increase in the amount of SiC and B4C in the composite structure and the increase in the discharge current.
期刊介绍:
Journal of Engineering Research (JER) is a international, peer reviewed journal which publishes full length original research papers, reviews, case studies related to all areas of Engineering such as: Civil, Mechanical, Industrial, Electrical, Computer, Chemical, Petroleum, Aerospace, Architectural, Biomedical, Coastal, Environmental, Marine & Ocean, Metallurgical & Materials, software, Surveying, Systems and Manufacturing Engineering. In particular, JER focuses on innovative approaches and methods that contribute to solving the environmental and manufacturing problems, which exist primarily in the Arabian Gulf region and the Middle East countries. Kuwait University used to publish the Journal "Kuwait Journal of Science and Engineering" (ISSN: 1024-8684), which included Science and Engineering articles since 1974. In 2011 the decision was taken to split KJSE into two independent Journals - "Journal of Engineering Research "(JER) and "Kuwait Journal of Science" (KJS).