{"title":"Image embedding and user multi-preference modeling for data collection sampling","authors":"Anju Jose Tom, Laura Toni, Thomas Maugey","doi":"10.1186/s13634-023-01069-0","DOIUrl":null,"url":null,"abstract":"Abstract This work proposes an end-to-end user-centric sampling method aimed at selecting the images from an image collection that are able to maximize the information perceived by a given user. As main contributions, we first introduce novel metrics that assess the amount of perceived information retained by the user when experiencing a set of images. Given the actual information present in a set of images, which is the volume spanned by the set in the corresponding latent space, we show how to take into account the user’s preferences in such a volume calculation to build a user-centric metric for the perceived information. Finally, we propose a sampling strategy seeking the minimum set of images that maximize the information perceived by a given user. Experiments using the coco dataset show the ability of the proposed approach to accurately integrate user preference while keeping a reasonable diversity in the sampled image set.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"12 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01069-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This work proposes an end-to-end user-centric sampling method aimed at selecting the images from an image collection that are able to maximize the information perceived by a given user. As main contributions, we first introduce novel metrics that assess the amount of perceived information retained by the user when experiencing a set of images. Given the actual information present in a set of images, which is the volume spanned by the set in the corresponding latent space, we show how to take into account the user’s preferences in such a volume calculation to build a user-centric metric for the perceived information. Finally, we propose a sampling strategy seeking the minimum set of images that maximize the information perceived by a given user. Experiments using the coco dataset show the ability of the proposed approach to accurately integrate user preference while keeping a reasonable diversity in the sampled image set.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.