Regular and p-Regular Orbits of Solvable Linear Groups, II

IF 0.4 4区 数学 Q4 MATHEMATICS
Thomas Michael Keller, Yong Yang
{"title":"Regular and p-Regular Orbits of Solvable Linear Groups, II","authors":"Thomas Michael Keller, Yong Yang","doi":"10.1142/s100538672300024x","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a faithful [Formula: see text]-module for a finite group [Formula: see text] and let[Formula: see text] be a prime dividing [Formula: see text]. An orbit [Formula: see text] for the action of [Formula: see text] on[Formula: see text] is regular if [Formula: see text], and is [Formula: see text]-regular if [Formula: see text]. In this note, we study two questions, one by the authors and one by Isaacs, related to the [Formula: see text]-regular orbits and regular orbits of the linear group actions.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s100538672300024x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a faithful [Formula: see text]-module for a finite group [Formula: see text] and let[Formula: see text] be a prime dividing [Formula: see text]. An orbit [Formula: see text] for the action of [Formula: see text] on[Formula: see text] is regular if [Formula: see text], and is [Formula: see text]-regular if [Formula: see text]. In this note, we study two questions, one by the authors and one by Isaacs, related to the [Formula: see text]-regular orbits and regular orbits of the linear group actions.
可解线性群的正则轨道和p正则轨道,2
设[公式:见文]为一个有限群的忠实[公式:见文]-模[公式:见文],设[公式:见文]为一个素数除[公式:见文]。[公式:见文]作用于[公式:见文]的轨道[公式:见文]是正则的[公式:见文],是[公式:见文]-正则的[公式:见文]。在这篇笔记中,我们研究了两个问题,一个是作者提出的,另一个是艾萨克斯提出的,它们与线性群作用的正则轨道和正则轨道有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信