Shot-gather Reconstruction using a Deep Data Prior-based Neural Network Approach

Luis Miguel Rodríguez-López, Kareth León-López, Paul Goyes-Peñafiel, Laura Galvis, Henry Arguello
{"title":"Shot-gather Reconstruction using a Deep Data Prior-based Neural Network Approach","authors":"Luis Miguel Rodríguez-López, Kareth León-López, Paul Goyes-Peñafiel, Laura Galvis, Henry Arguello","doi":"10.18273/revuin.v22n3-2023013","DOIUrl":null,"url":null,"abstract":"Seismic surveys are often affected by environmental obstacles or restrictions that prevent regular sampling in seismic acquisition. To address missing data, various methods, including deep learning techniques, have been developed to extract features from complex information, albeit with the limitation of requiring external seismic databases. While previous works have primarily focused on trace reconstruction, missing shot-gathers directly impact the seismic processing flow and represent a major challenge in seismic data regularization. In this paper, we propose DIPsgr, a seismic shot-gather reconstruction method that uses only the incomplete seismic acquisition measurements to estimate their missing information employing unsupervised deep learning. Numerical experiments on three databases demonstrate that DIPsgr recovers the complete set of traces in each shot-gather, with preserved information and seismic events.","PeriodicalId":278060,"journal":{"name":"Revista UIS Ingenierías","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista UIS Ingenierías","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revuin.v22n3-2023013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic surveys are often affected by environmental obstacles or restrictions that prevent regular sampling in seismic acquisition. To address missing data, various methods, including deep learning techniques, have been developed to extract features from complex information, albeit with the limitation of requiring external seismic databases. While previous works have primarily focused on trace reconstruction, missing shot-gathers directly impact the seismic processing flow and represent a major challenge in seismic data regularization. In this paper, we propose DIPsgr, a seismic shot-gather reconstruction method that uses only the incomplete seismic acquisition measurements to estimate their missing information employing unsupervised deep learning. Numerical experiments on three databases demonstrate that DIPsgr recovers the complete set of traces in each shot-gather, with preserved information and seismic events.
基于深度数据先验神经网络的射击采集重建
地震勘探经常受到环境障碍或限制的影响,妨碍了地震采集中的常规采样。为了解决丢失的数据,已经开发了各种方法,包括深度学习技术,从复杂的信息中提取特征,尽管需要外部地震数据库。虽然以往的工作主要集中在迹线重建上,但缺少射击集直接影响地震处理流程,是地震数据正则化的主要挑战。在本文中,我们提出了DIPsgr,一种仅使用不完整地震采集测量值来估计其缺失信息的地震采集重建方法,采用无监督深度学习。在3个数据库上进行的数值实验表明,DIPsgr可以恢复每次采集的完整轨迹,并保留了信息和地震事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信