Lie Symmetry Classification, Optimal System, and Conservation Laws of Damped Klein–Gordon Equation with Power Law Non-Linearity

Fiazuddin D. Zaman, Fazal M. Mahomed, Faiza Arif
{"title":"Lie Symmetry Classification, Optimal System, and Conservation Laws of Damped Klein–Gordon Equation with Power Law Non-Linearity","authors":"Fiazuddin D. Zaman, Fazal M. Mahomed, Faiza Arif","doi":"10.3390/mca28050096","DOIUrl":null,"url":null,"abstract":"We used the classical Lie symmetry method to study the damped Klein–Gordon equation (Kge) with power law non-linearity utt+α(u)ut=(uβux)x+f(u). We carried out a complete Lie symmetry classification by finding forms for α(u) and f(u). This led to various cases. Corresponding to each case, we obtained one-dimensional optimal systems of subalgebras. Using the subalgebras, we reduced the Kge to ordinary differential equations and determined some invariant solutions. Furthermore, we obtained conservation laws using the partial Lagrangian approach.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28050096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We used the classical Lie symmetry method to study the damped Klein–Gordon equation (Kge) with power law non-linearity utt+α(u)ut=(uβux)x+f(u). We carried out a complete Lie symmetry classification by finding forms for α(u) and f(u). This led to various cases. Corresponding to each case, we obtained one-dimensional optimal systems of subalgebras. Using the subalgebras, we reduced the Kge to ordinary differential equations and determined some invariant solutions. Furthermore, we obtained conservation laws using the partial Lagrangian approach.
具有幂律非线性的阻尼Klein-Gordon方程的Lie对称分类、最优系统和守恒律
采用经典的Lie对称方法研究了幂律非线性utt+α(u)ut=(uβux)x+f(u)的阻尼Klein-Gordon方程(Kge)。我们通过寻找α(u)和f(u)的形式进行了完整的李对称分类。这导致了各种各样的案件。与每种情况相对应,我们得到了子代数的一维最优系统。利用子代数,我们将Kge简化为常微分方程,并确定了一些不变解。此外,我们利用部分拉格朗日方法得到了守恒定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信