{"title":"The Application of an Artificial Neural Network as a Baseline Model for Condition Monitoring of Innovative Humidified Micro Gas Turbine Cycles","authors":"Kathryn Colquhoun, Nikpey Homam, Ward De Paepe","doi":"10.1115/1.4063785","DOIUrl":null,"url":null,"abstract":"Abstract The MGT market is still considered to be niche and there are R&D&I challenges that need to be addressed to further promote this technology in distributed generation applications. Innovative MGT cycles based on a cycle humidification concept, can be considered to obtain higher system performance. However, given the fact that MGTs are installed close to the consumption points, where they are operated by non-technical prosumers with very limited access to maintenance services, they should also offer high availability and reliability to avoid unexpected outages and secure the supply. Therefore, intelligent monitoring systems are needed that can support non-expert end-users to detect degradation and plan maintenance before a breakdown occurs. In this study, we investigated and developed advanced methods based on artificial neural networks (ANNs) for condition monitoring of a humidified MGT cycle under real-life operational conditions. To create a high-performing model, extensive data preprocessing has been conducted to remove data outliers and select optimum model features, which provide best results. Additionally, the model hyperparameters such as learning rate, momentum and number of hidden nodes have been altered to achieve the most accurate predictions. The results of this study have provided a baseline ANN model capable of conducting condition monitoring of a micro-Humid Air Turbine (mHAT) system, which will be applied to additional studies in the future.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":"144 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063785","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The MGT market is still considered to be niche and there are R&D&I challenges that need to be addressed to further promote this technology in distributed generation applications. Innovative MGT cycles based on a cycle humidification concept, can be considered to obtain higher system performance. However, given the fact that MGTs are installed close to the consumption points, where they are operated by non-technical prosumers with very limited access to maintenance services, they should also offer high availability and reliability to avoid unexpected outages and secure the supply. Therefore, intelligent monitoring systems are needed that can support non-expert end-users to detect degradation and plan maintenance before a breakdown occurs. In this study, we investigated and developed advanced methods based on artificial neural networks (ANNs) for condition monitoring of a humidified MGT cycle under real-life operational conditions. To create a high-performing model, extensive data preprocessing has been conducted to remove data outliers and select optimum model features, which provide best results. Additionally, the model hyperparameters such as learning rate, momentum and number of hidden nodes have been altered to achieve the most accurate predictions. The results of this study have provided a baseline ANN model capable of conducting condition monitoring of a micro-Humid Air Turbine (mHAT) system, which will be applied to additional studies in the future.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.