R. K. Khulbe, A. Pattanayak, Devender Sharma, G. S. Bisht, M. C. Pant
{"title":"New liguleless (<i>lg2</i>) maize stocks: Genetic resources for leaf architectural and haploid induction rate assessment studies","authors":"R. K. Khulbe, A. Pattanayak, Devender Sharma, G. S. Bisht, M. C. Pant","doi":"10.1111/pbr.13147","DOIUrl":null,"url":null,"abstract":"Abstract Liguleless mutants produce defective ligules and auricles and, consequently, have more upright leaves than their ligulate counterparts, making them useful genetic material for plant architectural studies. Besides, owing to the recessive nature and amenability of the liguleless trait to phenotyping at the seedling stage, liguleless mutants are popularly used for ‘proof‐of‐concept’ demonstration and assessment of haploid induction rate (HIR) of haploid inducer lines (HILs) in maize. The commonly used liguleless testers in maize are of temperate origin and are challenging to use and maintain under tropical/sub‐tropical conditions. In the present study, liguleless lines (V 601, V 602, V 603 and V 604) derived from crosses between agronomically superior locally adapted tropical ligulate lines (V 407 and CM 152) and liguleless donors of temperate origin (PDH‐3 and PDH‐8) were evaluated for different agro‐morphological traits. Liguleless line V 602 was also used as a tester to assess the HIR of haploid inducer line EC937890 (CIM2GTAILP2). The results showed a mean HIR of 12.42% for EC937890, consistent with the HIR reported in other studies, thus demonstrating the efficacy of V 602 as a tester for determining HIR. The agronomically superior liguleless maize lines reported in this study will, therefore, be a valuable resource for leaf architectural studies, assessment of HIR of candidate HILs and maintenance of high HIR in the HILs presently in wide use in the doubled haploid (DH) programmes. Additionally, these genetic stocks carry the liguleless trait in genetic backgrounds with known heterotic affinity with early maturity Indian public maize germplasm and, therefore, can be used directly as parents in hybrid development programmes.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"1 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Breeding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/pbr.13147","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Liguleless mutants produce defective ligules and auricles and, consequently, have more upright leaves than their ligulate counterparts, making them useful genetic material for plant architectural studies. Besides, owing to the recessive nature and amenability of the liguleless trait to phenotyping at the seedling stage, liguleless mutants are popularly used for ‘proof‐of‐concept’ demonstration and assessment of haploid induction rate (HIR) of haploid inducer lines (HILs) in maize. The commonly used liguleless testers in maize are of temperate origin and are challenging to use and maintain under tropical/sub‐tropical conditions. In the present study, liguleless lines (V 601, V 602, V 603 and V 604) derived from crosses between agronomically superior locally adapted tropical ligulate lines (V 407 and CM 152) and liguleless donors of temperate origin (PDH‐3 and PDH‐8) were evaluated for different agro‐morphological traits. Liguleless line V 602 was also used as a tester to assess the HIR of haploid inducer line EC937890 (CIM2GTAILP2). The results showed a mean HIR of 12.42% for EC937890, consistent with the HIR reported in other studies, thus demonstrating the efficacy of V 602 as a tester for determining HIR. The agronomically superior liguleless maize lines reported in this study will, therefore, be a valuable resource for leaf architectural studies, assessment of HIR of candidate HILs and maintenance of high HIR in the HILs presently in wide use in the doubled haploid (DH) programmes. Additionally, these genetic stocks carry the liguleless trait in genetic backgrounds with known heterotic affinity with early maturity Indian public maize germplasm and, therefore, can be used directly as parents in hybrid development programmes.
期刊介绍:
PLANT BREEDING publishes full-length original manuscripts and review articles on all aspects of plant improvement, breeding methodologies, and genetics to include qualitative and quantitative inheritance and genomics of major crop species. PLANT BREEDING provides readers with cutting-edge information on use of molecular techniques and genomics as they relate to improving gain from selection. Since its subject matter embraces all aspects of crop improvement, its content is sought after by both industry and academia. Fields of interest: Genetics of cultivated plants as well as research in practical plant breeding.