{"title":"Integrated maintenance and production scheduling for unrelated parallel machines with setup times","authors":"Michael Geurtsen, Jelle Adan, Alp Akçay","doi":"10.1007/s10696-023-09511-z","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers jointly scheduling the production and resource-constrained maintenance activities in a manufacturing setting with unrelated parallel machines. In particular, a single maintenance activity needs to be scheduled on each machine in one of its available time windows, and the maintenance activities require a scarce resource, thereby limiting the number of maintenance activities that can be scheduled simultaneously on different machines. In addition, machine- and sequence-dependent setup times, machine eligibility constraints and job-specific release and due dates are considered. A mixed-integer linear program is formulated with objectives including the makespan and, motivated from practice, a weighted sum of total production completion times at machines and total job tardiness. Additionally, a hybrid genetic algorithm with a novel solution representation is proposed for solving industry-scale large instances. A case study is performed with real-world data from a semiconductor manufacturer, where production and maintenance are scheduled separately. The benefit of simultaneously scheduling production and maintenance is investigated. Tests with real-world data show that the proposed model results in schedules that substantially improve the current factory practice.","PeriodicalId":50441,"journal":{"name":"Flexible Services and Manufacturing Journal","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible Services and Manufacturing Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10696-023-09511-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This paper considers jointly scheduling the production and resource-constrained maintenance activities in a manufacturing setting with unrelated parallel machines. In particular, a single maintenance activity needs to be scheduled on each machine in one of its available time windows, and the maintenance activities require a scarce resource, thereby limiting the number of maintenance activities that can be scheduled simultaneously on different machines. In addition, machine- and sequence-dependent setup times, machine eligibility constraints and job-specific release and due dates are considered. A mixed-integer linear program is formulated with objectives including the makespan and, motivated from practice, a weighted sum of total production completion times at machines and total job tardiness. Additionally, a hybrid genetic algorithm with a novel solution representation is proposed for solving industry-scale large instances. A case study is performed with real-world data from a semiconductor manufacturer, where production and maintenance are scheduled separately. The benefit of simultaneously scheduling production and maintenance is investigated. Tests with real-world data show that the proposed model results in schedules that substantially improve the current factory practice.
期刊介绍:
The mission of the Flexible Services and Manufacturing Journal, formerly known as the International Journal of Flexible Manufacturing Systems, is to publish original, high-quality research papers in the field of services and manufacturing management. All aspects in this field including the interface between engineering and management, the design and analysis of service and manufacturing systems as well as operational planning and decision support are covered. The journal seeks papers that have a clear focus on the applicability in the real business world including all kinds of services and manufacturing industries, e.g. in logistics, transportation, health care, manufacturing-based services, production planning and control, and supply chain management. Flexibility should be understood in its widest sense as a system’s ability to respond to changes in the environment through improved decision making and business development procedures and enabling IT solutions.