Bootstrap Inference in Cointegrating Regressions: Traditional and Self-Normalized Test Statistics

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Karsten Reichold, Carsten Jentsch
{"title":"Bootstrap Inference in Cointegrating Regressions: Traditional and Self-Normalized Test Statistics","authors":"Karsten Reichold, Carsten Jentsch","doi":"10.1080/07350015.2023.2271538","DOIUrl":null,"url":null,"abstract":"Traditional tests of hypotheses on the cointegrating vector are well known to suffer from severe size distortions in finite samples, especially when the data are characterized by large levels of endogeneity or error serial correlation. To address this issue, we combine a vector autoregressive (VAR) sieve bootstrap to construct critical values with a self-normalization approach that avoids direct estimation of long-run variance parameters when computing test statistics. To asymptotically justify this method, we prove bootstrap consistency for the self-normalized test statistics under mild conditions. In addition, the underlying bootstrap invariance principle allows us to prove bootstrap consistency also for traditional test statistics based on popular modified OLS estimators. Simulation results show that using bootstrap critical values instead of asymptotic critical values reduces size distortions associated with traditional test statistics considerably, but combining the VAR sieve bootstrap with self-normalization can lead to even less size distorted tests at the cost of only small power losses. We illustrate the usefulness of the VAR sieve bootstrap in empirical applications by analyzing the validity of the Fisher effect in 19 OECD countries.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2271538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional tests of hypotheses on the cointegrating vector are well known to suffer from severe size distortions in finite samples, especially when the data are characterized by large levels of endogeneity or error serial correlation. To address this issue, we combine a vector autoregressive (VAR) sieve bootstrap to construct critical values with a self-normalization approach that avoids direct estimation of long-run variance parameters when computing test statistics. To asymptotically justify this method, we prove bootstrap consistency for the self-normalized test statistics under mild conditions. In addition, the underlying bootstrap invariance principle allows us to prove bootstrap consistency also for traditional test statistics based on popular modified OLS estimators. Simulation results show that using bootstrap critical values instead of asymptotic critical values reduces size distortions associated with traditional test statistics considerably, but combining the VAR sieve bootstrap with self-normalization can lead to even less size distorted tests at the cost of only small power losses. We illustrate the usefulness of the VAR sieve bootstrap in empirical applications by analyzing the validity of the Fisher effect in 19 OECD countries.
协整回归中的自举推理:传统和自归一化检验统计量
众所周知,对协整向量的传统假设检验在有限样本中存在严重的尺寸扭曲,特别是当数据具有高水平的内生性或误差序列相关时。为了解决这个问题,我们结合了向量自回归(VAR)筛选bootstrap来构建临界值,并采用自归一化方法,避免在计算检验统计量时直接估计长期方差参数。为了渐近证明该方法,我们证明了自归一化检验统计量在温和条件下的自举一致性。此外,底层的自举不变性原理使我们能够证明基于流行的修正OLS估计量的传统测试统计量的自举一致性。仿真结果表明,使用自举临界值代替渐近临界值可以显著减少与传统测试统计量相关的尺寸畸变,而将VAR筛自举与自归一化相结合可以以较小的功率损失为代价导致更小的尺寸畸变测试。我们通过分析19个经合组织国家的费雪效应的有效性来说明VAR筛选自举在实证应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信