{"title":"Biological degradation of 2,4,6-trichlorophenol using anaerobic sequencing batch reactor equipped with a rotating biological bed","authors":"Nahid Ghochlavi, Ali Ahmad Aghapour","doi":"10.1080/10889868.2023.2269245","DOIUrl":null,"url":null,"abstract":"Abstract2, 4, 6-Triclorphenol is a halogenated aromatic compound with toxic, volatile, and odor properties. The anaerobic processes are superior to aerobic processes due to better dehalogenation of 2, 4, 6-Triclorphenol and easier control of releasing this toxic and odorous chemical compound into the air. However, anaerobic processes have lower reaction rates than aerobic processes. In this study, a rotating biological bed was used in an anaerobic sequencing batch reactor to increase the rate of anaerobic reactions. The anaerobic sequencing batch reactor equipped with a rotating biological bed removed more than 99% of the 2, 4, 6-Triclorphenol, 96% of total phenolic compounds, and more than 86% of its chemical oxidation demand in 2, 4, 6-Triclorphenol concentration of 430 mg/L and hydraulic retention time of 12 h. With the biological degradation of the 2, 4, 6-Triclorphenol by an anaerobic sequencing batch reactor Equipped with a rotating biological bed, more than 92% of the chlorine atoms in the structure of this compound were released into the effluent. Therefore, almost complete dehalogenation of 2, 4, 6-Triclorphenol is performed by this process. By removing the rotating biological bed from the anaerobic sequencing batch reactor equipped with a rotating biological bed, the bioreactor efficiency declined rapidly and progressed to failure. The role of rotating biological bed in dehalogenation (32%), biological degradation (10%), and mineralization (83%) of 2, 4, 6-Triclorphenol are very important. Therefore, a rotating biological bed has a significant role in promoting an anaerobic sequencing batch reactor. The anaerobic sequencing batch reactor equipped with a rotating biological bed can remove higher concentrations of 2, 4, 6-Triclorphenol at a lower hydraulic retention time than previously studied processes. Thus, the rotating biological bed can be an appropriate option for promoting anaerobic wastewater treatment plants that receive wastewater containing volatile, toxic, and complex organic compounds.Keywords: Anaerobic processbiological degradationrotating biological bed246-trichlorophenols Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe authors gratefully acknowledge the financial and technical support of the Urmia University of Medical Sciences, Iran.","PeriodicalId":8935,"journal":{"name":"Bioremediation Journal","volume":"9 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioremediation Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10889868.2023.2269245","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract2, 4, 6-Triclorphenol is a halogenated aromatic compound with toxic, volatile, and odor properties. The anaerobic processes are superior to aerobic processes due to better dehalogenation of 2, 4, 6-Triclorphenol and easier control of releasing this toxic and odorous chemical compound into the air. However, anaerobic processes have lower reaction rates than aerobic processes. In this study, a rotating biological bed was used in an anaerobic sequencing batch reactor to increase the rate of anaerobic reactions. The anaerobic sequencing batch reactor equipped with a rotating biological bed removed more than 99% of the 2, 4, 6-Triclorphenol, 96% of total phenolic compounds, and more than 86% of its chemical oxidation demand in 2, 4, 6-Triclorphenol concentration of 430 mg/L and hydraulic retention time of 12 h. With the biological degradation of the 2, 4, 6-Triclorphenol by an anaerobic sequencing batch reactor Equipped with a rotating biological bed, more than 92% of the chlorine atoms in the structure of this compound were released into the effluent. Therefore, almost complete dehalogenation of 2, 4, 6-Triclorphenol is performed by this process. By removing the rotating biological bed from the anaerobic sequencing batch reactor equipped with a rotating biological bed, the bioreactor efficiency declined rapidly and progressed to failure. The role of rotating biological bed in dehalogenation (32%), biological degradation (10%), and mineralization (83%) of 2, 4, 6-Triclorphenol are very important. Therefore, a rotating biological bed has a significant role in promoting an anaerobic sequencing batch reactor. The anaerobic sequencing batch reactor equipped with a rotating biological bed can remove higher concentrations of 2, 4, 6-Triclorphenol at a lower hydraulic retention time than previously studied processes. Thus, the rotating biological bed can be an appropriate option for promoting anaerobic wastewater treatment plants that receive wastewater containing volatile, toxic, and complex organic compounds.Keywords: Anaerobic processbiological degradationrotating biological bed246-trichlorophenols Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe authors gratefully acknowledge the financial and technical support of the Urmia University of Medical Sciences, Iran.
期刊介绍:
Bioremediation Journal is a peer-reviewed quarterly that publishes current, original laboratory and field research in bioremediation, the use of biological and supporting physical treatments to treat contaminated soil and groundwater. The journal rapidly disseminates new information on emerging and maturing bioremediation technologies and integrates scientific research and engineering practices. The authors, editors, and readers are scientists, field engineers, site remediation managers, and regulatory experts from the academic, industrial, and government sectors worldwide.
High-quality, original articles make up the primary content. Other contributions are technical notes, short communications, and occasional invited review articles.