Fully Coupled Analysis of Aerothermoelastic Deformation of a Scramjet Inlet

IF 1.7 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Jennifer A. Horing, Iain D. Boyd, Kurt K. Maute
{"title":"Fully Coupled Analysis of Aerothermoelastic Deformation of a Scramjet Inlet","authors":"Jennifer A. Horing, Iain D. Boyd, Kurt K. Maute","doi":"10.2514/1.b39345","DOIUrl":null,"url":null,"abstract":"Although supersonic combustion ramjets—scramjets—provide a fuel-efficient method for propulsion at hypersonic speeds, current challenges with the engine prohibit the robustness necessary for space accessibility and trans-atmospheric flight. One such challenge the engine faces is the vehicle and inlet’s compliance under harsh thermal and mechanical loads at hypersonic speeds. The deformation of the inlet has ramifications on the downstream components and the engine as a whole, creating conditions outside of the original design envelope. Additionally, the deformations impact the vehicle’s aerodynamic performance due to the integrated airframe/inlet design. One mitigation technique that works in tandem with thermal management is active cooling. It is important to understand the impacts of active cooling on the inlet and engine performance; in order to do so, a multiphysics modeling approach is used to capture the coupled aerothermostructural response of the inlet, and a multifidelity approach is used to model the remaining components of the scramjet. The system is found to be extremely sensitive to the changes in deformation, leading to increased flow separation and heating and to deviations of the engine performance and efficiency from the original design point.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.b39345","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Although supersonic combustion ramjets—scramjets—provide a fuel-efficient method for propulsion at hypersonic speeds, current challenges with the engine prohibit the robustness necessary for space accessibility and trans-atmospheric flight. One such challenge the engine faces is the vehicle and inlet’s compliance under harsh thermal and mechanical loads at hypersonic speeds. The deformation of the inlet has ramifications on the downstream components and the engine as a whole, creating conditions outside of the original design envelope. Additionally, the deformations impact the vehicle’s aerodynamic performance due to the integrated airframe/inlet design. One mitigation technique that works in tandem with thermal management is active cooling. It is important to understand the impacts of active cooling on the inlet and engine performance; in order to do so, a multiphysics modeling approach is used to capture the coupled aerothermostructural response of the inlet, and a multifidelity approach is used to model the remaining components of the scramjet. The system is found to be extremely sensitive to the changes in deformation, leading to increased flow separation and heating and to deviations of the engine performance and efficiency from the original design point.
超燃冲压发动机进气道气动热弹性变形全耦合分析
尽管超音速燃烧冲压发动机(超燃冲压发动机)为高超音速推进提供了一种省油的方法,但目前发动机面临的挑战阻碍了其在太空可达性和跨大气飞行中所必需的稳健性。发动机面临的其中一个挑战是飞行器和进气道在高超音速下严酷的热负荷和机械负荷下的适应性。进气道的变形会对下游部件和整个发动机产生影响,从而产生超出原始设计范围的条件。此外,由于机身/进气道的一体化设计,这些变形会影响车辆的空气动力学性能。与热管理协同工作的一种缓解技术是主动冷却。了解主动冷却对进气道和发动机性能的影响是很重要的;为此,采用多物理场建模方法捕获了进气道的气动-热-结构耦合响应,并采用多保真度方法对超燃冲压发动机的其余部件进行了建模。研究发现,该系统对变形变化极为敏感,导致气流分离和加热增加,发动机性能和效率与原始设计点偏离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Propulsion and Power
Journal of Propulsion and Power 工程技术-工程:宇航
CiteScore
4.20
自引率
21.10%
发文量
97
审稿时长
6.5 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信