Study on Motion Mechanism of Suspended Particles in Water Under Ultrasound

IF 0.6 4区 工程技术 Q4 MECHANICS
Mechanika Pub Date : 2023-10-18 DOI:10.5755/j02.mech.33704
Pu LIU, Yonglie ZHAN, Kailun QUAN, Zhengqiang TANG
{"title":"Study on Motion Mechanism of Suspended Particles in Water Under Ultrasound","authors":"Pu LIU, Yonglie ZHAN, Kailun QUAN, Zhengqiang TANG","doi":"10.5755/j02.mech.33704","DOIUrl":null,"url":null,"abstract":"Particles in the ultrasonic field by the influence of acoustic radiation force, its motion characteristics will be changed. Based on the simplified ultrasonic cleaning assumption, numerical simulation is used to construct a simulation model of suspended particles in the ultrasonic field in liquid water environment, and to study the law of ultrasonic waves on the motion characteristics of suspended particles in water. The research results show that the ultrasonic arrangement of the array makes the ultrasonic waves produce ultrasonic focusing on the propagation path. The alternating fluctuations of ultrasonic positive and negative sound pressure are in the horizontal line parallel to the bottom, and the vibration amplitude of suspended particles in the middle region is the largest. For the vertical position perpendicular to the bottom, the region with larger vibration amplitude of suspended particles is at 1/5 from the bottom. The particles in the high sound pressure area are pushed to the gathering area, and the particle vibration amplitude in the low sound pressure area is small, which proves that the gathering area of the particles is often the low sound pressure area. The research results will contribute to the study of particle motion in the ultrasonic field.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.mech.33704","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Particles in the ultrasonic field by the influence of acoustic radiation force, its motion characteristics will be changed. Based on the simplified ultrasonic cleaning assumption, numerical simulation is used to construct a simulation model of suspended particles in the ultrasonic field in liquid water environment, and to study the law of ultrasonic waves on the motion characteristics of suspended particles in water. The research results show that the ultrasonic arrangement of the array makes the ultrasonic waves produce ultrasonic focusing on the propagation path. The alternating fluctuations of ultrasonic positive and negative sound pressure are in the horizontal line parallel to the bottom, and the vibration amplitude of suspended particles in the middle region is the largest. For the vertical position perpendicular to the bottom, the region with larger vibration amplitude of suspended particles is at 1/5 from the bottom. The particles in the high sound pressure area are pushed to the gathering area, and the particle vibration amplitude in the low sound pressure area is small, which proves that the gathering area of the particles is often the low sound pressure area. The research results will contribute to the study of particle motion in the ultrasonic field.
超声作用下水中悬浮粒子运动机理的研究
粒子在超声场中受声辐射力的影响,其运动特性会发生改变。在简化超声清洗假设的基础上,采用数值模拟的方法构建了液态水环境中超声场中悬浮颗粒的模拟模型,研究了超声波对水中悬浮颗粒运动特性的影响规律。研究结果表明,阵列的超声排列使超声波在传播路径上产生聚焦超声。超声正负声压的交变波动在平行于底部的水平线上,中间区域悬浮颗粒的振动幅值最大。对于垂直于底部的垂直位置,悬浮颗粒振动幅值较大的区域位于距离底部1/5处。高声压区的颗粒被推至聚集区,低声压区的颗粒振动幅值较小,证明颗粒的聚集区往往是低声压区。研究结果将有助于超声场中粒子运动的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanika
Mechanika 物理-力学
CiteScore
1.30
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is publishing scientific papers dealing with the following problems: Mechanics of Solid Bodies; Mechanics of Fluids and Gases; Dynamics of Mechanical Systems; Design and Optimization of Mechanical Systems; Mechanical Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信