Future perspectives on QDs embedded nano-fibrous materials as high capacity sustainable anode for Na-ion batteries technology

IF 3.3 Q3 ENERGY & FUELS
Sunil Kumar, R. N. Rai, Darshan Singh, Anees A. Ansari, Youngil Lee, Laxman Singh
{"title":"Future perspectives on QDs embedded nano-fibrous materials as high capacity sustainable anode for Na-ion batteries technology","authors":"Sunil Kumar, R. N. Rai, Darshan Singh, Anees A. Ansari, Youngil Lee, Laxman Singh","doi":"10.1557/s43581-023-00067-x","DOIUrl":null,"url":null,"abstract":"Electrode functionalization (shape-selective materials) has transformed the energy storage and production technology in the modern age of developing Batteries science. Sodium-ion batteries are promising electrochemical energy supply system suitable alternative to Li-ion batteries, particularly for low cost, earth abundance Na ion, high structural stability, and better functioning behavior at cooler temperatures. In Na-ion batteries (NIBs), lowest potential electrode (negative electrode) act as primary charge carrier and thermodynamically susceptible to reduce alkali Na +. However, conventional anode material suffers from volume variation and stability issues. Quantum dots (QDs) size (1–10 nm) supported nanofiber (1D) functions as high rate redox-active materials due to synergistic interaction and structural confinement effect. Present perspective shed light on various structural interactions, thermodynamic interactions and interfaces which may lower the energy barrier (activation energy) during electrode electrochemical performance. Quantum dots provide functional sites in nanofiber resulting in expansion of Na+ storage and sodiation reaction. Thus, structural and chemical variation unveil future research for high capacity, robust Na+ storage, and better thermodynamic stability of fibrous Na-ion anode materials to upgrade the futuristic electrode technology.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-023-00067-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Electrode functionalization (shape-selective materials) has transformed the energy storage and production technology in the modern age of developing Batteries science. Sodium-ion batteries are promising electrochemical energy supply system suitable alternative to Li-ion batteries, particularly for low cost, earth abundance Na ion, high structural stability, and better functioning behavior at cooler temperatures. In Na-ion batteries (NIBs), lowest potential electrode (negative electrode) act as primary charge carrier and thermodynamically susceptible to reduce alkali Na +. However, conventional anode material suffers from volume variation and stability issues. Quantum dots (QDs) size (1–10 nm) supported nanofiber (1D) functions as high rate redox-active materials due to synergistic interaction and structural confinement effect. Present perspective shed light on various structural interactions, thermodynamic interactions and interfaces which may lower the energy barrier (activation energy) during electrode electrochemical performance. Quantum dots provide functional sites in nanofiber resulting in expansion of Na+ storage and sodiation reaction. Thus, structural and chemical variation unveil future research for high capacity, robust Na+ storage, and better thermodynamic stability of fibrous Na-ion anode materials to upgrade the futuristic electrode technology.
量子点嵌入纳米纤维材料作为钠离子电池技术高容量可持续阳极的未来展望
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信