Jikke de Winter, Tomás Manzaneque, Murali Krishna Ghatkesar
{"title":"Damping of 3D-printed polymer microbeam resonators","authors":"Jikke de Winter, Tomás Manzaneque, Murali Krishna Ghatkesar","doi":"10.1088/1361-6439/ad08ef","DOIUrl":null,"url":null,"abstract":"Abstract The emerging high-resolution 3D printing technique called two-photon polymerization (2PP) enables to print devices bottom-up rapidly, contrary to the top-down lithography-based fabrication methods. In this work, various polymer microbeams are 3D printed and their resonant characteristics are analyzed to understand the origin of damping. The 2PP printed polymer resonators have shown less damping than other polymer devices reported earlier, with tensile-stressed clamped-clamped beams reaching a record quality factor of 1819. The resonant energy loss was dominant by bulk friction damping. These results pave the path towards using 3D printed microresonators as mass sensors with improved design and fabrication flexibility.
","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"19 4","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad08ef","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The emerging high-resolution 3D printing technique called two-photon polymerization (2PP) enables to print devices bottom-up rapidly, contrary to the top-down lithography-based fabrication methods. In this work, various polymer microbeams are 3D printed and their resonant characteristics are analyzed to understand the origin of damping. The 2PP printed polymer resonators have shown less damping than other polymer devices reported earlier, with tensile-stressed clamped-clamped beams reaching a record quality factor of 1819. The resonant energy loss was dominant by bulk friction damping. These results pave the path towards using 3D printed microresonators as mass sensors with improved design and fabrication flexibility.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.