BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand Herz-Morrey spaces

IF 0.7 Q2 MATHEMATICS
Babar SULTAN, Mehvish SULTAN, Ferit GÜRBÜZ
{"title":"BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand Herz-Morrey spaces","authors":"Babar SULTAN, Mehvish SULTAN, Ferit GÜRBÜZ","doi":"10.31801/cfsuasmas.1328691","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{S}^{n-1}$ denote the unit sphere in $\\mathbb{R}^n$ with the normalized Lebesgue measure. Let $\\Phi\\in L^{r}(\\mathbb{S}^{n-1})$ is a homogeneous function of degree zero and $b$ is a locally integrable function on $\\mathbb{R}^n$. In this paper we define the higher order commutators of Marcinkiewicz integral $[b,\\mu_{\\Phi}]^m$ and prove the boundedness of $[b,\\mu_{\\Phi}]^m$ under some proper assumptions on grand variable Herz-Morrey spaces $M\\dot{K}^{\\alpha(.),\\beta}_{u,v(.)}(\\mathbb{R}^n)$.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":"47 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1328691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbb{S}^{n-1}$ denote the unit sphere in $\mathbb{R}^n$ with the normalized Lebesgue measure. Let $\Phi\in L^{r}(\mathbb{S}^{n-1})$ is a homogeneous function of degree zero and $b$ is a locally integrable function on $\mathbb{R}^n$. In this paper we define the higher order commutators of Marcinkiewicz integral $[b,\mu_{\Phi}]^m$ and prove the boundedness of $[b,\mu_{\Phi}]^m$ under some proper assumptions on grand variable Herz-Morrey spaces $M\dot{K}^{\alpha(.),\beta}_{u,v(.)}(\mathbb{R}^n)$.
大Herz-Morrey空间上Marcinkiewicz积分算子高阶对易子的BMO估计
设$\mathbb{S}^{n-1}$用归一化勒贝格测度表示$\mathbb{R}^n$中的单位球。设$\Phi\in L^{r}(\mathbb{S}^{n-1})$是零次齐次函数,$b$是$\mathbb{R}^n$上的一个局部可积函数。本文定义了Marcinkiewicz积分$[b,\mu_{\Phi}]^m$的高阶对易子,并在大变量Herz-Morrey空间$M\dot{K}^{\alpha(.),\beta}_{u,v(.)}(\mathbb{R}^n)$上证明了$[b,\mu_{\Phi}]^m$的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信