Dimension of uncountably generated submodules

IF 0.5 Q3 MATHEMATICS
Maryam DAVOUDİAN
{"title":"Dimension of uncountably generated submodules","authors":"Maryam DAVOUDİAN","doi":"10.24330/ieja.1385180","DOIUrl":null,"url":null,"abstract":"In this article we introduce and study the concepts of uncountably generated Krull dimension and uncountably generated Noetherian dimension of an $R$-module, where $R$ is an arbitrary associative ring. These dimensions are ordinal numbers and extend the notion of Krull dimension and Noetherian dimension.
 They respectively rely on the behavior of descending and ascending chains of uncountably generated submodules.
 It is proved that a quotient finite dimensional module $M$ has uncountably generated Krull dimension if and only if it has Krull dimension, but
 the values of these dimensions might differ.
 Similarly, a quotient finite dimensional module $M$ has uncountably generated Noetherian dimension if and only if it has Noetherian dimension.
 We also show that the Noetherian dimension of a quotient finite dimensional module $M$ with uncountably generated Noetherian dimension $\\beta$ is less than or equal to $\\omega _{1}+\\beta $, where $\\omega_{1}$ is the first uncountable ordinal number.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"52 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1385180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we introduce and study the concepts of uncountably generated Krull dimension and uncountably generated Noetherian dimension of an $R$-module, where $R$ is an arbitrary associative ring. These dimensions are ordinal numbers and extend the notion of Krull dimension and Noetherian dimension. They respectively rely on the behavior of descending and ascending chains of uncountably generated submodules. It is proved that a quotient finite dimensional module $M$ has uncountably generated Krull dimension if and only if it has Krull dimension, but the values of these dimensions might differ. Similarly, a quotient finite dimensional module $M$ has uncountably generated Noetherian dimension if and only if it has Noetherian dimension. We also show that the Noetherian dimension of a quotient finite dimensional module $M$ with uncountably generated Noetherian dimension $\beta$ is less than or equal to $\omega _{1}+\beta $, where $\omega_{1}$ is the first uncountable ordinal number.
不可数生成子模块的维度
本文介绍并研究了$R$ -模的不可数生成Krull维和不可数生成Noetherian维的概念,其中$R$是一个任意结合环。这些维数是序数,扩展了Krull维数和Noetherian维数的概念。它们分别依赖于不可数生成子模块的降序链和升序链的行为。
证明了商有限维模$M$当且仅当具有Krull维数时具有不可数生成Krull维数,但
这些维度的值可能不同。
类似地,一个商有限维模块$M$当且仅当它具有诺埃尔维数时才具有不可数生成的诺埃尔维数。
我们还证明了具有不可数生成的noether维数$\beta$的商有限维模块$M$的noether维数小于等于$\omega _{1}+\beta $,其中$\omega_{1}$是第一个不可数序数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信