{"title":"Effect of Friction Parameters on Tribological Properties of Erucamide as Grease Additive on GCr15 Steel","authors":"Qingchun Liu, YiMin Mo","doi":"10.1115/1.4063810","DOIUrl":null,"url":null,"abstract":"The present study investigates the effect of friction parameters on tribological properties of erucamide as an additive in grease on GCr15 steel, as well as the sensitivity of erucamide to these parameters. An orthogonal test design is utilized to sample the friction parameters, followed by the construction of a Kriging model to articulate the relationship between these parameters and the designated objectives (average friction coefficient and wear volume). The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to optimize the design objectives and verify the accuracy of the model. Monte Carlo method is used to analyze the sensitivity of erucamide to the friction parameters. The results showed that erucamide exhibite excellent tribological properties at 80N/20Hz/25°C and 20N/20Hz/25°C. The sensitivity of erucamide to friction parameters from high to low is temperature, load and speed. This can be ascribed to erucamide's unique structure, encompassing a globular aggregation head and a hydrophobic tail extending outward. The anti-friction effects and lubrication properties of erucamide are driven by its rheological properties and intermolecular interactions. At elevated temperatures, erucamide's fluidity escalates, favoring the lubricating film formation; however, excessive fluidity may impede its adherence to requisite locations, thereby resulting in compromised tribological properties of erucamide at high temperatures.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063810","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates the effect of friction parameters on tribological properties of erucamide as an additive in grease on GCr15 steel, as well as the sensitivity of erucamide to these parameters. An orthogonal test design is utilized to sample the friction parameters, followed by the construction of a Kriging model to articulate the relationship between these parameters and the designated objectives (average friction coefficient and wear volume). The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to optimize the design objectives and verify the accuracy of the model. Monte Carlo method is used to analyze the sensitivity of erucamide to the friction parameters. The results showed that erucamide exhibite excellent tribological properties at 80N/20Hz/25°C and 20N/20Hz/25°C. The sensitivity of erucamide to friction parameters from high to low is temperature, load and speed. This can be ascribed to erucamide's unique structure, encompassing a globular aggregation head and a hydrophobic tail extending outward. The anti-friction effects and lubrication properties of erucamide are driven by its rheological properties and intermolecular interactions. At elevated temperatures, erucamide's fluidity escalates, favoring the lubricating film formation; however, excessive fluidity may impede its adherence to requisite locations, thereby resulting in compromised tribological properties of erucamide at high temperatures.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints