Mickael Audrain, Anne-Laure Egesipe, Noémie Tentillier, Laure Font, Monisha Ratnam, Lorene Mottier, Mathieu Clavel, Morgan Le Roux-Bourdieu, Alexis Fenyi, Romain Ollier, Elodie Chevalier, Florence Guilhot, Aline Fuchs, Kasia Piorkowska, Becky Carlyle, Steven E Arnold, James D Berry, Ruth Luthi-Carter, Oskar Adolfsson, Andrea Pfeifer, Marie Kosco-Vilbois, Tamara Seredenina, Tariq Afroz
{"title":"Targeting amyotrophic lateral sclerosis by neutralizing seeding-competent TDP-43 in cerebrospinal fluid","authors":"Mickael Audrain, Anne-Laure Egesipe, Noémie Tentillier, Laure Font, Monisha Ratnam, Lorene Mottier, Mathieu Clavel, Morgan Le Roux-Bourdieu, Alexis Fenyi, Romain Ollier, Elodie Chevalier, Florence Guilhot, Aline Fuchs, Kasia Piorkowska, Becky Carlyle, Steven E Arnold, James D Berry, Ruth Luthi-Carter, Oskar Adolfsson, Andrea Pfeifer, Marie Kosco-Vilbois, Tamara Seredenina, Tariq Afroz","doi":"10.1093/braincomms/fcad306","DOIUrl":null,"url":null,"abstract":"Abstract In amyotrophic lateral sclerosis, a disease driven by abnormal transactive response DNA-binding protein of 43 kDa aggregation, CSF may contain pathological species of transactive response DNA-binding protein of 43 kDa contributing to propagation of pathology and neuronal toxicity. These species, released in part by degenerating neurons, would act as a template for aggregation of physiological protein contributing to the spread of pathology in the brain and spinal cord. In this study, a robust seed amplification assay was established to assess the presence of seeding-competent transactive response DNA-binding protein of 43 kDa species in CSF of apparently sporadic amyotrophic lateral sclerosis patients. These samples resulted in a significant acceleration of substrate aggregation differentiating the kinetics from healthy controls. In parallel, a second assay was developed to determine the level of target engagement that would be necessary to neutralize such species in human CSF by a therapeutic monoclonal antibody targeting transactive response DNA-binding protein of 43 kDa. For this, evaluation of pharmacokinetics/pharmacodynamic effect for monoclonal antibody, ACI-5891.9 in vivo and in vitro confirmed that a CSF concentration of ≈ 1100 ng/mL would be sufficient for sustained target saturation. Using this concentration in the seed amplification assay, ACI-5891.9 was able to neutralize the transactive response DNA-binding protein of 43 kDa pathogenic seeds derived from amyotrophic lateral sclerosis patient CSF. This translational work adds to the evidence of transmission of transactive response DNA-binding protein of 43 kDa pathology via CSF that could contribute to the non-contiguous pattern of clinical manifestations observed in amyotrophic lateral sclerosis and demonstrates the ability of a therapeutic monoclonal antibody to neutralize the toxic, extracellular seeding-competent transactive response DNA-binding protein of 43 kDa species in the CSF of apparently sporadic amyotrophic lateral sclerosis patients.","PeriodicalId":9318,"journal":{"name":"Brain Communications","volume":"39 5-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcad306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In amyotrophic lateral sclerosis, a disease driven by abnormal transactive response DNA-binding protein of 43 kDa aggregation, CSF may contain pathological species of transactive response DNA-binding protein of 43 kDa contributing to propagation of pathology and neuronal toxicity. These species, released in part by degenerating neurons, would act as a template for aggregation of physiological protein contributing to the spread of pathology in the brain and spinal cord. In this study, a robust seed amplification assay was established to assess the presence of seeding-competent transactive response DNA-binding protein of 43 kDa species in CSF of apparently sporadic amyotrophic lateral sclerosis patients. These samples resulted in a significant acceleration of substrate aggregation differentiating the kinetics from healthy controls. In parallel, a second assay was developed to determine the level of target engagement that would be necessary to neutralize such species in human CSF by a therapeutic monoclonal antibody targeting transactive response DNA-binding protein of 43 kDa. For this, evaluation of pharmacokinetics/pharmacodynamic effect for monoclonal antibody, ACI-5891.9 in vivo and in vitro confirmed that a CSF concentration of ≈ 1100 ng/mL would be sufficient for sustained target saturation. Using this concentration in the seed amplification assay, ACI-5891.9 was able to neutralize the transactive response DNA-binding protein of 43 kDa pathogenic seeds derived from amyotrophic lateral sclerosis patient CSF. This translational work adds to the evidence of transmission of transactive response DNA-binding protein of 43 kDa pathology via CSF that could contribute to the non-contiguous pattern of clinical manifestations observed in amyotrophic lateral sclerosis and demonstrates the ability of a therapeutic monoclonal antibody to neutralize the toxic, extracellular seeding-competent transactive response DNA-binding protein of 43 kDa species in the CSF of apparently sporadic amyotrophic lateral sclerosis patients.