E. Ramya, Dushyant Kushavah, D. Narayana Rao, Dong Xiang
{"title":"Optical properties of silver-doped ZnS nanostructures","authors":"E. Ramya, Dushyant Kushavah, D. Narayana Rao, Dong Xiang","doi":"10.1142/s0218863523500868","DOIUrl":null,"url":null,"abstract":"Silver (Ag)-doped and un-doped Zinc sulfide (ZnS) nanostructures (NSs) with different concentrations (ZnS: Ag 1%, 3%, 5%, 10%) were prepared by using the chemical method at room temperature. Doping of Ag into ZnS nanostructures modified its optical properties. The size and crystallinity of stabilized ZnS:Ag nanostructures are confirmed with SEM (Scanning electron microscopy) and XRD (X-ray diffraction). The formation of nanostructures is justified by UV-visible absorption spectra. The luminescence intensity of nanostructures has increased drastically at ZnS:Ag-10% and is characterized by a fluorescence spectrometer. The nonlinear optical properties are found by using the Z-scan setup and act as optical limiters. The nonlinear absorption coefficient [Formula: see text] and nonlinear refractive index ([Formula: see text] are in the range of 10[Formula: see text][Formula: see text]cm/W and 10[Formula: see text][Formula: see text]cm 2 /W, respectively. The optical limiting threshold value is 0.11 J/cm 2 . These nanostructures can be used as optical limiters.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"64 11","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218863523500868","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Silver (Ag)-doped and un-doped Zinc sulfide (ZnS) nanostructures (NSs) with different concentrations (ZnS: Ag 1%, 3%, 5%, 10%) were prepared by using the chemical method at room temperature. Doping of Ag into ZnS nanostructures modified its optical properties. The size and crystallinity of stabilized ZnS:Ag nanostructures are confirmed with SEM (Scanning electron microscopy) and XRD (X-ray diffraction). The formation of nanostructures is justified by UV-visible absorption spectra. The luminescence intensity of nanostructures has increased drastically at ZnS:Ag-10% and is characterized by a fluorescence spectrometer. The nonlinear optical properties are found by using the Z-scan setup and act as optical limiters. The nonlinear absorption coefficient [Formula: see text] and nonlinear refractive index ([Formula: see text] are in the range of 10[Formula: see text][Formula: see text]cm/W and 10[Formula: see text][Formula: see text]cm 2 /W, respectively. The optical limiting threshold value is 0.11 J/cm 2 . These nanostructures can be used as optical limiters.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.