Influence of post-processing treatment on the surface roughness of polyamide PA12 samples manufactured using additive methods in the context of the production of orthoses
{"title":"Influence of post-processing treatment on the surface roughness of polyamide PA12 samples manufactured using additive methods in the context of the production of orthoses","authors":"Paweł Turek, Anna Bazan, Andrzej Zakrecki","doi":"10.1177/09544054231202423","DOIUrl":null,"url":null,"abstract":"Additive techniques are gaining popularity, primarily due to the emergence of new 3D printing methods, advancements in 3D printers, and the availability of innovative materials. Models produced using additive processes can undergo additional post-processing and dyeing to modify their functional and visual properties. This article presents the results of surface roughness tests conducted on samples made of polyamide PA12, using the Selective Laser Sintering (SLS) and HP MultiJet Fusion (MJF) methods. Regarding the processing methods, chemical surface treatment contributed to reducing Ra and Rz parameters by about 80% for both analyzed printing methods, while mechanical surface treatment resulted in a reduction of approximately 40% for SLS samples and 30% for MJF samples. On the other hand, dyeing and applying an antibacterial coating did not significantly affect the Ra and Rz parameter values. Considering the obtained results, the recommended manufacturing method for orthosis is the MJF method, and the finishing process should include mechanical treatment followed by dyeing.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"40 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231202423","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Additive techniques are gaining popularity, primarily due to the emergence of new 3D printing methods, advancements in 3D printers, and the availability of innovative materials. Models produced using additive processes can undergo additional post-processing and dyeing to modify their functional and visual properties. This article presents the results of surface roughness tests conducted on samples made of polyamide PA12, using the Selective Laser Sintering (SLS) and HP MultiJet Fusion (MJF) methods. Regarding the processing methods, chemical surface treatment contributed to reducing Ra and Rz parameters by about 80% for both analyzed printing methods, while mechanical surface treatment resulted in a reduction of approximately 40% for SLS samples and 30% for MJF samples. On the other hand, dyeing and applying an antibacterial coating did not significantly affect the Ra and Rz parameter values. Considering the obtained results, the recommended manufacturing method for orthosis is the MJF method, and the finishing process should include mechanical treatment followed by dyeing.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.