Intrinsically Disordered Ku Protein-Derived Cell-Penetrating Peptides

IF 3.8 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biswanath Maity, Hariharan Moorthy and Thimmaiah Govindaraju*, 
{"title":"Intrinsically Disordered Ku Protein-Derived Cell-Penetrating Peptides","authors":"Biswanath Maity,&nbsp;Hariharan Moorthy and Thimmaiah Govindaraju*,&nbsp;","doi":"10.1021/acsbiomedchemau.3c00032","DOIUrl":null,"url":null,"abstract":"<p >Efficient delivery of bioactive ingredients into cells is a major challenge. Cell-penetrating peptides (CPPs) have emerged as promising vehicles for this purpose. We have developed novel CPPs derived from the flexible and disordered tail extensions of DNA-binding Ku proteins. Ku-P4, the lead CPP identified in this study, is biocompatible and displays high internalization efficacy. Biophysical studies show that the proline residue is crucial for preserving the intrinsically disordered state and biocompatibility. DNA binding studies showed effective DNA condensation to form a positively charged polyplex. The polyplex exhibited effective penetration through the cell membrane and delivered the plasmid DNA inside the cell. These novel CPPs have the potential to enhance the cellular uptake and therapeutic efficacy of peptide-drug or gene conjugates.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"3 6","pages":"471–479"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.3c00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient delivery of bioactive ingredients into cells is a major challenge. Cell-penetrating peptides (CPPs) have emerged as promising vehicles for this purpose. We have developed novel CPPs derived from the flexible and disordered tail extensions of DNA-binding Ku proteins. Ku-P4, the lead CPP identified in this study, is biocompatible and displays high internalization efficacy. Biophysical studies show that the proline residue is crucial for preserving the intrinsically disordered state and biocompatibility. DNA binding studies showed effective DNA condensation to form a positively charged polyplex. The polyplex exhibited effective penetration through the cell membrane and delivered the plasmid DNA inside the cell. These novel CPPs have the potential to enhance the cellular uptake and therapeutic efficacy of peptide-drug or gene conjugates.

Abstract Image

Abstract Image

内在无序 Ku 蛋白衍生的细胞穿透肽
将生物活性成分高效地输送到细胞中是一项重大挑战。为此,细胞穿透肽(CPPs)已成为一种很有前景的载体。我们从 DNA 结合 Ku 蛋白的柔性无序尾端延伸部分开发出了新型 CPPs。Ku-P4是本研究中发现的主要CPP,它具有生物相容性,并显示出很高的内化效力。生物物理研究表明,脯氨酸残基对于保持固有无序状态和生物相容性至关重要。DNA 结合研究表明,DNA 能有效缩合,形成带正电荷的多聚体。这种多聚体能有效穿透细胞膜,将质粒 DNA 送入细胞内。这些新型 CPPs 有潜力提高细胞对多肽-药物或基因共轭物的吸收和治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Bio & Med Chem Au
ACS Bio & Med Chem Au 药物、生物、化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信