{"title":"A Color Image-Encryption Algorithm Using Extended DNA Coding and Zig-Zag Transform Based on a Fractional-Order Laser System","authors":"Fanqi Meng, Zhenglan Gu","doi":"10.3390/fractalfract7110795","DOIUrl":null,"url":null,"abstract":"With the advancement of information technology, the security of digital images has become increasingly important. To ensure the integrity of images, a novel color image-encryption algorithm based on extended DNA coding, Zig-Zag transform, and a fractional-order laser system is proposed in this paper. First, the dynamic characteristics of the fractional-order laser chaotic system (FLCS) were analyzed using a phase diagram and Lyapunov exponent spectra. The chaotic sequences generated by the system were used to design image-encryption algorithms. Second, a modified Zig-Zag confusing method was adopted to confuse the image. Finally, in the diffusion link, the DNA encoding scheme was extended to allow for a greater number of DNA encoding rules, increasing the randomness of the matrix and improving the security of the encryption scheme. The performance of the designed encryption algorithm is analyzed using key space, a histogram, information entropy, correlation coefficients, differential attack, and robustness analysis. The experimental results demonstrate that the algorithm can withstand multiple decryption methods and has strong encryption capability. The proposed novel color image-encryption scheme enables secure communication of digital images.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"67 ","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110795","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of information technology, the security of digital images has become increasingly important. To ensure the integrity of images, a novel color image-encryption algorithm based on extended DNA coding, Zig-Zag transform, and a fractional-order laser system is proposed in this paper. First, the dynamic characteristics of the fractional-order laser chaotic system (FLCS) were analyzed using a phase diagram and Lyapunov exponent spectra. The chaotic sequences generated by the system were used to design image-encryption algorithms. Second, a modified Zig-Zag confusing method was adopted to confuse the image. Finally, in the diffusion link, the DNA encoding scheme was extended to allow for a greater number of DNA encoding rules, increasing the randomness of the matrix and improving the security of the encryption scheme. The performance of the designed encryption algorithm is analyzed using key space, a histogram, information entropy, correlation coefficients, differential attack, and robustness analysis. The experimental results demonstrate that the algorithm can withstand multiple decryption methods and has strong encryption capability. The proposed novel color image-encryption scheme enables secure communication of digital images.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.