{"title":"Tackling of hydraulic cavitation in pressurized pipe flow using high- or low-density polyethylene penstock and short-section","authors":"Dalila Kraiem, Ali Triki","doi":"10.2166/aqua.2023.189","DOIUrl":null,"url":null,"abstract":"Abstract Recent studies have proved that the utilization of polyethylene (PE) short-section or penstock is a promising water hammer control tool. However, the interplay between the magnitude attenuation and the phase offset of pressure-wave oscillations remains challenging. This study aimed at inspecting the capacity of a dual PE penstock/short-section-based control technique, with regard to the aforementioned interplay. In this technique, a PE penstock was lumped to the transient initiating zone of the main pipe and a short-section of the counter extremity of the pipe was replaced with PE. The transient pressure-wave behavior in a gravitational viscoelastic pipe involving cavitation was described by the extended 1D water hammer equations embedding the Vitkovsky and Kelvin–Voigt add-ons. The numerical solution was performed by the fixed grid method of characteristics. The high- (HDPE) and low-density (LDPE) were demonstrated in this study. Analysis revealed that upgrading techniques based on LDPE enabled a desirable tradeoff between the magnitude attenuation and the phase offset of pressure-wave oscillations. Particularly, the dual penstock/short-section specific upgrading technique allowed a more important attenuation magnitude of pressure peak (or crest), and led to a similar expansion of the wave oscillation period. Furthermore, results evidenced that the proposed technique outperformed the renewal of the original piping system.","PeriodicalId":34693,"journal":{"name":"AQUA-Water Infrastructure Ecosystems and Society","volume":"6 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA-Water Infrastructure Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2023.189","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Recent studies have proved that the utilization of polyethylene (PE) short-section or penstock is a promising water hammer control tool. However, the interplay between the magnitude attenuation and the phase offset of pressure-wave oscillations remains challenging. This study aimed at inspecting the capacity of a dual PE penstock/short-section-based control technique, with regard to the aforementioned interplay. In this technique, a PE penstock was lumped to the transient initiating zone of the main pipe and a short-section of the counter extremity of the pipe was replaced with PE. The transient pressure-wave behavior in a gravitational viscoelastic pipe involving cavitation was described by the extended 1D water hammer equations embedding the Vitkovsky and Kelvin–Voigt add-ons. The numerical solution was performed by the fixed grid method of characteristics. The high- (HDPE) and low-density (LDPE) were demonstrated in this study. Analysis revealed that upgrading techniques based on LDPE enabled a desirable tradeoff between the magnitude attenuation and the phase offset of pressure-wave oscillations. Particularly, the dual penstock/short-section specific upgrading technique allowed a more important attenuation magnitude of pressure peak (or crest), and led to a similar expansion of the wave oscillation period. Furthermore, results evidenced that the proposed technique outperformed the renewal of the original piping system.