{"title":"Stability of the Levi-Civita tensors and an Alon–Tarsi type theorem","authors":"Damir Yeliussizov","doi":"10.5802/crmath.505","DOIUrl":null,"url":null,"abstract":"We show that the Levi-Civita tensors are semistable in the sense of Geometric Invariant Theory, which is equivalent to an analogue of the Alon–Tarsi conjecture on Latin squares. The proof uses the connection of Tao’s slice rank with semistable tensors. We also show an application to an asymptotic saturation-type version of Rota’s basis conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the Levi-Civita tensors are semistable in the sense of Geometric Invariant Theory, which is equivalent to an analogue of the Alon–Tarsi conjecture on Latin squares. The proof uses the connection of Tao’s slice rank with semistable tensors. We also show an application to an asymptotic saturation-type version of Rota’s basis conjecture.