comparative analysis of machine learning algorithms for land use and land cover classification using google earth engine platform

Q4 Computer Science
Abhijit Patil, Sachin Panhalkar
{"title":"comparative analysis of machine learning algorithms for land use and land cover classification using google earth engine platform","authors":"Abhijit Patil, Sachin Panhalkar","doi":"10.58825/jog.2023.17.2.96","DOIUrl":null,"url":null,"abstract":"This study evaluates different machine learning algorithms for land use and land cover classification using Sentinel-2 Level-1C data with 10-meter spatial resolution. The algorithms include Random Forest (RF), Classification and Regression Trees (CART), Support Vector Machines (SVM), Naive Bayes (NB), and Gradient Boosting (GTB). The classification was performed on the Google Earth Engine (GEE) platform. Results highlight variations in land cover classification among algorithms, with RF and CART identifying cropland as dominant, SVM indicating fallow land presence, NB revealing significant forest cover, and GTB emphasizing cropland importance. Accuracy assessment was performed to evaluate the performance of the algorithms, considering metrics such as producer accuracy, consumer accuracy, overall accuracy, and Kappa coefficient. SVM demonstrates the highest overall accuracy and agreement with reference data. The study contributes insights for land management and planning, and GEE proves valuable for LULC classification.
 
 
","PeriodicalId":53688,"journal":{"name":"测绘地理信息","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"测绘地理信息","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58825/jog.2023.17.2.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates different machine learning algorithms for land use and land cover classification using Sentinel-2 Level-1C data with 10-meter spatial resolution. The algorithms include Random Forest (RF), Classification and Regression Trees (CART), Support Vector Machines (SVM), Naive Bayes (NB), and Gradient Boosting (GTB). The classification was performed on the Google Earth Engine (GEE) platform. Results highlight variations in land cover classification among algorithms, with RF and CART identifying cropland as dominant, SVM indicating fallow land presence, NB revealing significant forest cover, and GTB emphasizing cropland importance. Accuracy assessment was performed to evaluate the performance of the algorithms, considering metrics such as producer accuracy, consumer accuracy, overall accuracy, and Kappa coefficient. SVM demonstrates the highest overall accuracy and agreement with reference data. The study contributes insights for land management and planning, and GEE proves valuable for LULC classification.
基于Google earth引擎平台的土地利用与土地覆盖分类机器学习算法对比分析
本研究利用10米空间分辨率的Sentinel-2 Level-1C数据,评估了不同的土地利用和土地覆盖分类机器学习算法。这些算法包括随机森林(RF)、分类与回归树(CART)、支持向量机(SVM)、朴素贝叶斯(NB)和梯度增强(GTB)。分类是在谷歌地球引擎(GEE)平台上进行的。结果显示了不同算法在土地覆盖分类上的差异,RF和CART认为耕地占主导地位,SVM表明休耕地存在,NB显示显著的森林覆盖,GTB强调耕地的重要性。进行准确性评估以评估算法的性能,考虑诸如生产者准确性,消费者准确性,总体准确性和Kappa系数等指标。SVM总体精度最高,且与参考数据一致。该研究为土地管理和规划提供了见解,并证明了GEE对土地利用价值分类的价值。 & # x0D;& # x0D;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
测绘地理信息
测绘地理信息 Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
0.20
自引率
0.00%
发文量
4458
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信