Coupler Microwave-Activated Controlled-Phase Gate on Fluxonium Qubits

IF 9.3 Q1 PHYSICS, APPLIED
Ilya A. Simakov, Grigoriy S. Mazhorin, Ilya N. Moskalenko, Nikolay N. Abramov, Alexander A. Grigorev, Dmitry O. Moskalev, Anastasiya A. Pishchimova, Nikita S. Smirnov, Evgeniy V. Zikiy, Ilya A. Rodionov, Ilya S. Besedin
{"title":"Coupler Microwave-Activated Controlled-Phase Gate on Fluxonium Qubits","authors":"Ilya A. Simakov, Grigoriy S. Mazhorin, Ilya N. Moskalenko, Nikolay N. Abramov, Alexander A. Grigorev, Dmitry O. Moskalev, Anastasiya A. Pishchimova, Nikita S. Smirnov, Evgeniy V. Zikiy, Ilya A. Rodionov, Ilya S. Besedin","doi":"10.1103/prxquantum.4.040321","DOIUrl":null,"url":null,"abstract":"Tunable couplers have recently become one of the most powerful tools for implementing two-qubit gates between superconducting qubits. A tunable coupler typically includes a nonlinear element, such as a superconducting quantum interference device, which is used to tune the resonance frequency of an LC circuit connecting two qubits. Here we propose a complimentary approach where instead of tuning the resonance frequency of the tunable coupler by applying a quasistatic control signal, we excite by microwave the degree of freedom associated with the coupler itself. Because of strong effective longitudinal coupling between the coupler and the qubits, the frequency of this transition strongly depends on the computational state, leading to different phase accumulations in different states. Using this method, we experimentally demonstrate a controlled-Z gate of 44-ns duration on a fluxonium-based quantum processor, obtaining a fidelity of 97.6%±0.4% characterized by cross-entropy benchmarking.2 MoreReceived 22 February 2023Accepted 5 October 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040321Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum gatesPhysical SystemsSuperconducting qubitsCondensed Matter, Materials & Applied Physics","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.4.040321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Tunable couplers have recently become one of the most powerful tools for implementing two-qubit gates between superconducting qubits. A tunable coupler typically includes a nonlinear element, such as a superconducting quantum interference device, which is used to tune the resonance frequency of an LC circuit connecting two qubits. Here we propose a complimentary approach where instead of tuning the resonance frequency of the tunable coupler by applying a quasistatic control signal, we excite by microwave the degree of freedom associated with the coupler itself. Because of strong effective longitudinal coupling between the coupler and the qubits, the frequency of this transition strongly depends on the computational state, leading to different phase accumulations in different states. Using this method, we experimentally demonstrate a controlled-Z gate of 44-ns duration on a fluxonium-based quantum processor, obtaining a fidelity of 97.6%±0.4% characterized by cross-entropy benchmarking.2 MoreReceived 22 February 2023Accepted 5 October 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040321Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum gatesPhysical SystemsSuperconducting qubitsCondensed Matter, Materials & Applied Physics

Abstract Image

耦合器微波激活控制相位门在Fluxonium量子比特上
可调谐耦合器最近成为在超导量子比特之间实现双量子比特门的最强大工具之一。可调谐耦合器通常包括非线性元件,例如超导量子干涉器件,用于调谐连接两个量子位的LC电路的共振频率。在这里,我们提出了一种互补的方法,而不是通过应用准静态控制信号来调谐可调谐耦合器的谐振频率,我们通过微波来激发与耦合器本身相关的自由度。由于耦合器和量子位之间存在强而有效的纵向耦合,这种跃迁的频率强烈依赖于计算状态,导致不同状态下的相位积累不同。利用这种方法,我们在基于氟的量子处理器上实验证明了44-ns持续时间的可控z门,通过交叉熵基准测试获得了97.6%±0.4%的保真度根据知识共享署名4.0国际许可协议,美国物理学会doi:https://doi.org/10.1103/PRXQuantum.4.040321Published。这项工作的进一步分发必须保持作者的归属和已发表文章的标题,期刊引用和DOI。发表于美国物理学会物理学科标题(PhySH)研究领域量子门物理系统超导量子比特凝聚态材料与应用物理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信