{"title":"Wigner Equations for Phonons Transport and Quantum Heat Flux","authors":"V. D. Camiola, V. Romano, G. Vitanza","doi":"10.1007/s00332-023-09993-z","DOIUrl":null,"url":null,"abstract":"Abstract Starting from the quantum Liouville equation for the density operator and applying the Weyl quantization, Wigner equations for the acoustic, optical and Z phonons are deduced. The equations are valid for any solid, including 2D crystals like graphene. With the use of Moyal’s calculus and its properties, the pseudo-differential operators are expanded up to the second order in $$\\hbar $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ħ</mml:mi> </mml:math> . An energy transport model is obtained by using the moment method with closure relations based on a quantum version of the Maximum Entropy Principle by employing a relaxation time approximation for the production terms of energy and energy flux. An explicit form of the thermal conductivity with quantum correction up to $$\\hbar ^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>ħ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> order is obtained under a long-time scaling for the most relevant phonon branches.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00332-023-09993-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Starting from the quantum Liouville equation for the density operator and applying the Weyl quantization, Wigner equations for the acoustic, optical and Z phonons are deduced. The equations are valid for any solid, including 2D crystals like graphene. With the use of Moyal’s calculus and its properties, the pseudo-differential operators are expanded up to the second order in $$\hbar $$ ħ . An energy transport model is obtained by using the moment method with closure relations based on a quantum version of the Maximum Entropy Principle by employing a relaxation time approximation for the production terms of energy and energy flux. An explicit form of the thermal conductivity with quantum correction up to $$\hbar ^2$$ ħ2 order is obtained under a long-time scaling for the most relevant phonon branches.