{"title":"Orthogonal ring patterns in the plane","authors":"Alexander I. Bobenko, Tim Hoffmann, Thilo Rörig","doi":"10.1007/s10711-023-00859-y","DOIUrl":null,"url":null,"abstract":"Abstract We introduce orthogonal ring patterns consisting of pairs of concentric circles generalizing circle patterns. We show that orthogonal ring patterns are governed by the same equation as circle patterns. For every ring pattern there exists a one parameter family of patterns that interpolates between a circle pattern and its dual. We construct ring patterns analogues of the Doyle spiral, Erf and $$z^\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>α</mml:mi> </mml:msup> </mml:math> functions. We also derive a variational principle and compute ring patterns based on Dirichlet and Neumann boundary conditions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10711-023-00859-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We introduce orthogonal ring patterns consisting of pairs of concentric circles generalizing circle patterns. We show that orthogonal ring patterns are governed by the same equation as circle patterns. For every ring pattern there exists a one parameter family of patterns that interpolates between a circle pattern and its dual. We construct ring patterns analogues of the Doyle spiral, Erf and $$z^\alpha $$ zα functions. We also derive a variational principle and compute ring patterns based on Dirichlet and Neumann boundary conditions.
摘要推广圆图案,引入由同心圆对组成的正交环图案。我们证明正交环形图案与圆形图案由相同的方程控制。对于每一个环状图案,都存在一个参数族的图案,它插在圆形图案和它的对偶图案之间。我们构造了类似Doyle螺旋、Erf和$$z^\alpha $$ z α函数的环状图案。我们还推导了基于Dirichlet和Neumann边界条件的变分原理并计算了环图案。