Igor A. Mazur, Youngman Kim, Masayasu Harada, Hyun Kyu Lee
{"title":"QCD vacuum and baryon masses","authors":"Igor A. Mazur, Youngman Kim, Masayasu Harada, Hyun Kyu Lee","doi":"10.1142/s021830132350060x","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to study a possible role of the quantum chromodynamics vacuum in nuclear and hadron physics. Our proposal is essentially to introduce a candidate of the QCD vacuum through a gluon background field and calculate physical quantities as a function of the background field. In the present work we adopt the Copenhagen (spaghetti) vacuum. As a first application of the our approach, we investigate the effects of the Copenhagen vacuum on the ground-state baryon masses. We find that the baryon mass does depend on a parameter that characterizes the Copenhagen vacuum and satisfies the Gell-Mann-Okubo mass relation for the baryon octet. We also estimate the value of the parameter and discuss the chiral invariant nucleon mass in our framework.","PeriodicalId":14032,"journal":{"name":"International Journal of Modern Physics E-nuclear Physics","volume":"10 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E-nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021830132350060x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel approach to study a possible role of the quantum chromodynamics vacuum in nuclear and hadron physics. Our proposal is essentially to introduce a candidate of the QCD vacuum through a gluon background field and calculate physical quantities as a function of the background field. In the present work we adopt the Copenhagen (spaghetti) vacuum. As a first application of the our approach, we investigate the effects of the Copenhagen vacuum on the ground-state baryon masses. We find that the baryon mass does depend on a parameter that characterizes the Copenhagen vacuum and satisfies the Gell-Mann-Okubo mass relation for the baryon octet. We also estimate the value of the parameter and discuss the chiral invariant nucleon mass in our framework.