Liouville-type theorem for one-dimensional porous medium systems with sources

IF 0.8 4区 数学 Q2 MATHEMATICS
ANH TUAN DUONG
{"title":"Liouville-type theorem for one-dimensional porous medium systems with sources","authors":"ANH TUAN DUONG","doi":"10.55730/1300-0098.3459","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the one-dimensional porous medium system with sources \\begin{align*} \\begin{cases}u_t-( u^m)_{xx} =a_{11}u^{p}+a_{12} u^rv^{r+m}, (x,t)\\in J\\times I\\subset\\mathbb{R}\\times \\mathbb{R}\\\\ v_t-(v^m)_{xx} =a_{21} u^{r+m}v^{r}+a_{22}v^{p},\\;(x,t)\\in J\\times I\\subset \\mathbb{R}\\times \\mathbb{R}, \\end{cases} \\end{align*} where $p=2r+m$, $m>1$, $r>0$. Under the conditions $a_{12}\\geq 0, a_{21}\\geq 0$, $a_{11}>0$, and $a_{22}>0$, we prove that the system does not possess any nontrivial nonnegative weak solution.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":"36 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0098.3459","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the one-dimensional porous medium system with sources \begin{align*} \begin{cases}u_t-( u^m)_{xx} =a_{11}u^{p}+a_{12} u^rv^{r+m}, (x,t)\in J\times I\subset\mathbb{R}\times \mathbb{R}\\ v_t-(v^m)_{xx} =a_{21} u^{r+m}v^{r}+a_{22}v^{p},\;(x,t)\in J\times I\subset \mathbb{R}\times \mathbb{R}, \end{cases} \end{align*} where $p=2r+m$, $m>1$, $r>0$. Under the conditions $a_{12}\geq 0, a_{21}\geq 0$, $a_{11}>0$, and $a_{22}>0$, we prove that the system does not possess any nontrivial nonnegative weak solution.
一维有源多孔介质系统的liouville型定理
本文研究一维多孔介质系统,其源为\begin{align*} \begin{cases}u_t-( u^m)_{xx} =a_{11}u^{p}+a_{12} u^rv^{r+m}, (x,t)\in J\times I\subset\mathbb{R}\times \mathbb{R}\\ v_t-(v^m)_{xx} =a_{21} u^{r+m}v^{r}+a_{22}v^{p},\;(x,t)\in J\times I\subset \mathbb{R}\times \mathbb{R}, \end{cases} \end{align*},其中$p=2r+m$, $m>1$, $r>0$。在$a_{12}\geq 0, a_{21}\geq 0$、$a_{11}>0$和$a_{22}>0$条件下,证明了系统不存在非平凡非负弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信