{"title":"Effect of citric acid on the properties of thermoplastic bitter cassava starch plasticized with isosorbide","authors":"Arfiathi Arfiathi, Riska Sumirat, Firda Aulya Syamani, Muhammad Adly Rahandi Lubis, Fitry Filiyanti, Yeyen Nurhamiyah","doi":"10.1177/20412479231202591","DOIUrl":null,"url":null,"abstract":"The rising concern of environmental issues from the non-degradable conventional polymers is triggering the development of sustainable and renewable polymers. Thermoplastic starch (TPS) has been known to have huge potential to substitute conventional synthetic polymers. A thermoplastic starch was prepared using a non-food bitter cassava starch with isosorbide as plasticizer. To improve the dispersion and interfacial affinity of thermoplastic starch and boost the compatibility between starch and isosorbide, citric acid (CA) was used as an additive. The influence of citric acid to the TPS was then investigated. The result shows that citric acid improved tensile strength from 8.68 MPa to 11.98 MPa. The addition of citric acid at a concentration of 1 – 10 wt % can increase glass transition temperature (T g ) from 48.81°C to 63.89°C and storage modulus at 25°C from 1.20 GPa to 3.47 GPa. Two degradation temperatures (T d ) were detected which are T d1 onset value was decrease from 83.32°C down to 79.78°C while T d2 onset value was decrease from 275.29°C down to 247.17°C and T d2 max from 311.12°C to 295.06°C.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479231202591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The rising concern of environmental issues from the non-degradable conventional polymers is triggering the development of sustainable and renewable polymers. Thermoplastic starch (TPS) has been known to have huge potential to substitute conventional synthetic polymers. A thermoplastic starch was prepared using a non-food bitter cassava starch with isosorbide as plasticizer. To improve the dispersion and interfacial affinity of thermoplastic starch and boost the compatibility between starch and isosorbide, citric acid (CA) was used as an additive. The influence of citric acid to the TPS was then investigated. The result shows that citric acid improved tensile strength from 8.68 MPa to 11.98 MPa. The addition of citric acid at a concentration of 1 – 10 wt % can increase glass transition temperature (T g ) from 48.81°C to 63.89°C and storage modulus at 25°C from 1.20 GPa to 3.47 GPa. Two degradation temperatures (T d ) were detected which are T d1 onset value was decrease from 83.32°C down to 79.78°C while T d2 onset value was decrease from 275.29°C down to 247.17°C and T d2 max from 311.12°C to 295.06°C.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.