{"title":"Characteristics and selection of near-fault simulated earthquake ground motions for nonlinear analysis of buildings","authors":"Maha Kenawy, David McCallen, Arben Pitarka","doi":"10.1177/87552930231182164","DOIUrl":null,"url":null,"abstract":"Earthquake-induced ground shaking near rupturing faults is highly sensitive to the rupture characteristics, seismic wave propagation patterns and site conditions, and field recordings of near-fault shaking are relatively sparse. These challenges complicate the assessment of the seismic performance of near-fault structures. A common approach to representing near-fault ground motion in engineering analysis is to explicitly consider and select records with strong directivity pulses (pulse records). We use three-dimensional high-resolution physics-based earthquake simulations to test this approach in the context of scenario-based ground motion record selection, and to study the important characteristics of near-fault ground shaking. We highlight the deficiencies associated with classifying near-fault simulated records as “pulse” or “non-pulse,” based on the presence of a single dominating pulse in the velocity time history. We show that this approach is inadequate for characterizing near-fault shaking on soft soils which can be dominated by both forward rupture directivity and basin amplification effects. We conduct ground motion selection experiments for the analysis of near-fault structures with and without explicit classification of the pulse features in the records, and evaluate the bias in the predicted structural demands. We find that the maximum interstory drift demands on building structures imposed by unscaled site-specific simulated ground motion records selected based on relevant spectral shape features are not sensitive to the classification of records as pulse/non-pulse. Therefore, with regard to predicting the maximum interstory drifts in near-fault buildings, we do not find justification for the binary pulse classification of near-fault records.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"22 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/87552930231182164","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Earthquake-induced ground shaking near rupturing faults is highly sensitive to the rupture characteristics, seismic wave propagation patterns and site conditions, and field recordings of near-fault shaking are relatively sparse. These challenges complicate the assessment of the seismic performance of near-fault structures. A common approach to representing near-fault ground motion in engineering analysis is to explicitly consider and select records with strong directivity pulses (pulse records). We use three-dimensional high-resolution physics-based earthquake simulations to test this approach in the context of scenario-based ground motion record selection, and to study the important characteristics of near-fault ground shaking. We highlight the deficiencies associated with classifying near-fault simulated records as “pulse” or “non-pulse,” based on the presence of a single dominating pulse in the velocity time history. We show that this approach is inadequate for characterizing near-fault shaking on soft soils which can be dominated by both forward rupture directivity and basin amplification effects. We conduct ground motion selection experiments for the analysis of near-fault structures with and without explicit classification of the pulse features in the records, and evaluate the bias in the predicted structural demands. We find that the maximum interstory drift demands on building structures imposed by unscaled site-specific simulated ground motion records selected based on relevant spectral shape features are not sensitive to the classification of records as pulse/non-pulse. Therefore, with regard to predicting the maximum interstory drifts in near-fault buildings, we do not find justification for the binary pulse classification of near-fault records.
期刊介绍:
Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues.
EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.