Approximate Solutions of Linear Systems at a Universal Rate

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Stefan Steinerberger
{"title":"Approximate Solutions of Linear Systems at a Universal Rate","authors":"Stefan Steinerberger","doi":"10.1137/22m1517196","DOIUrl":null,"url":null,"abstract":"Let be invertible, unknown, and given. We are interested in approximate solutions: vectors such that is small. We prove that for all , there is a composition of orthogonal projections onto the hyperplanes generated by the rows of , where , which maps the origin to a vector satisfying . We note that this upper bound on is independent of the matrix . This procedure is stable in the sense that . The existence proof is based on a probabilistically refined analysis of the randomized Kaczmarz method, which seems to achieve this rate when solving for with high likelihood. We also prove a general version for matrices with and full rank.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1517196","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let be invertible, unknown, and given. We are interested in approximate solutions: vectors such that is small. We prove that for all , there is a composition of orthogonal projections onto the hyperplanes generated by the rows of , where , which maps the origin to a vector satisfying . We note that this upper bound on is independent of the matrix . This procedure is stable in the sense that . The existence proof is based on a probabilistically refined analysis of the randomized Kaczmarz method, which seems to achieve this rate when solving for with high likelihood. We also prove a general version for matrices with and full rank.
线性系统普遍速率下的近似解
让它可逆,未知,已知。我们感兴趣的是近似解:这样的向量很小。我们证明了,对于所有的向量,存在由,其中的行生成的超平面上的正交投影的复合,它将原点映射到一个满足的向量。我们注意到这个上界与矩阵无关。这个过程是稳定的,因为。存在性证明是基于随机化Kaczmarz方法的概率细化分析,当求解高似然时,该方法似乎达到了这个速率。我们也证明了具有和满秩矩阵的一般版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信