Accelerating ray tracing engine of BLENDER on the new Sunway architecture

Zhaoqi Sun, Zhen Wang, Mengyuan Hua, Puyu Xiong, Wubing Wan, Ping Gao, Wenlai Zhao, Zhenchun Huang, Lin Han
{"title":"Accelerating ray tracing engine of <scp>BLENDER</scp> on the new Sunway architecture","authors":"Zhaoqi Sun, Zhen Wang, Mengyuan Hua, Puyu Xiong, Wubing Wan, Ping Gao, Wenlai Zhao, Zhenchun Huang, Lin Han","doi":"10.1002/eng2.12789","DOIUrl":null,"url":null,"abstract":"Abstract With the increasing popularity of high‐resolution displays, there is a growing demand for more realistic rendered images. Ray tracing has become the most effective algorithm for image rendering, but its complexity and large amount of computing data require sophisticated HPC solutions. In this article, we present our efforts to port the ray tracing engine CYCLES of Blender to the new generation of Sunway supercomputers. We propose optimizations that are tailored to the new hardware architecture, including a multi‐level parallel scheme that efficiently maps and scales Blender onto the novel Sunway architecture, strategies to address memory bottlenecks, a revised task dispatching method that achieves excellent load balancing, and a pipeline approach that maximizes computation and communication overlap. By combining all these optimizations, we achieve a significant reduction in rendering time for a single‐frame image, from 2260 s using the single‐core serial version to 71 s using 48 processes, which is a speedup of about 128×. Accelerating the ray tracing engine CYCLES of Blender in the new generation of Sunway supercomputers.","PeriodicalId":11735,"journal":{"name":"Engineering Reports","volume":"18 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/eng2.12789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract With the increasing popularity of high‐resolution displays, there is a growing demand for more realistic rendered images. Ray tracing has become the most effective algorithm for image rendering, but its complexity and large amount of computing data require sophisticated HPC solutions. In this article, we present our efforts to port the ray tracing engine CYCLES of Blender to the new generation of Sunway supercomputers. We propose optimizations that are tailored to the new hardware architecture, including a multi‐level parallel scheme that efficiently maps and scales Blender onto the novel Sunway architecture, strategies to address memory bottlenecks, a revised task dispatching method that achieves excellent load balancing, and a pipeline approach that maximizes computation and communication overlap. By combining all these optimizations, we achieve a significant reduction in rendering time for a single‐frame image, from 2260 s using the single‐core serial version to 71 s using 48 processes, which is a speedup of about 128×. Accelerating the ray tracing engine CYCLES of Blender in the new generation of Sunway supercomputers.
在新的Sunway架构上加速BLENDER的光线追踪引擎
随着高分辨率显示器的日益普及,人们对更逼真的渲染图像的需求日益增长。光线追踪已经成为最有效的图像绘制算法,但其复杂性和庞大的计算数据需要复杂的HPC解决方案。在这篇文章中,我们展示了将Blender的光线追踪引擎周期移植到新一代神威超级计算机上的努力。我们提出了针对新硬件架构量身定制的优化方案,包括一个多层并行方案,可以有效地将Blender映射和扩展到新的Sunway架构上,解决内存瓶颈的策略,一个改进的任务调度方法,可以实现出色的负载平衡,以及一个最大化计算和通信重叠的管道方法。通过结合所有这些优化,我们实现了单帧图像渲染时间的显著减少,从使用单核串行版本的2260秒到使用48个进程的71秒,这是一个大约128倍的加速。加速新一代神威超级计算机Blender的光线追踪引擎周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信