On the theory of Bergman spaces on homogeneous Siegel domains

Mattia Calzi, Marco M. Peloso
{"title":"On the theory of Bergman spaces on homogeneous Siegel domains","authors":"Mattia Calzi, Marco M. Peloso","doi":"10.1007/s40627-023-00122-w","DOIUrl":null,"url":null,"abstract":"Abstract We consider mixed-norm Bergman spaces on homogeneous Siegel domains. In the literature, two different approaches have been considered and several results seem difficult to be compared. In this paper, we compare the results available in the literature and complete the existing ones in one of the two settings. The results we present are as follows: natural inclusions, density, completeness, reproducing properties, sampling, atomic decomposition, duality, continuity of Bergman projectors, boundary values, and transference.","PeriodicalId":87237,"journal":{"name":"Complex analysis and its synergies","volume":" 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex analysis and its synergies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40627-023-00122-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider mixed-norm Bergman spaces on homogeneous Siegel domains. In the literature, two different approaches have been considered and several results seem difficult to be compared. In this paper, we compare the results available in the literature and complete the existing ones in one of the two settings. The results we present are as follows: natural inclusions, density, completeness, reproducing properties, sampling, atomic decomposition, duality, continuity of Bergman projectors, boundary values, and transference.
齐次Siegel域上的Bergman空间理论
摘要考虑齐次Siegel域上的混合范数Bergman空间。在文献中,考虑了两种不同的方法,一些结果似乎难以比较。在本文中,我们比较了文献中已有的结果,并在两种设置中的一种情况下完成了现有的结果。我们给出的结果如下:天然内含物、密度、完备性、再现性、采样、原子分解、对偶性、Bergman投影的连续性、边界值和迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信