Muhammad Hareez Mohd Zaki, Mohd Azri Mohd Aziz, Suhana Sulaiman, Najidah Hambali
{"title":"Student Performance Classification using Support Vector Machine (SVM) with Polynomical Kernel on Online Student Activities","authors":"Muhammad Hareez Mohd Zaki, Mohd Azri Mohd Aziz, Suhana Sulaiman, Najidah Hambali","doi":"10.24191/jeesr.v23i1.009","DOIUrl":null,"url":null,"abstract":"—The increasing usage of classification algorithms has encouraged researchers to explore many topics, including academic-related topics. In addition, the availability of data from various academic information management systems in recent years has been increasing, causing classification to become a technique that is in demand by educational institutes. Thereby, having a classification technique is important in researching the data on students’ performance. The purpose of this study is to classify students’ performance by using a polynomial kernel of Support Vector Machine (SVM) on online students’ activities. A new dataset is proposed in this study, which consists of academic and student online behaviours that influence the students’ performance. The proposed dataset also undergoes pre-processing stage to improve the accuracy and identify the significance of the proposed features. The experiment for SVM-POLY classification performance was set with a range of values on the parameters to be optimised by an optimisation algorithm, Grid Search. Classification accuracy, Precision, Recall and f1-score were applied to observe the result and determine the best classifier performance. The experimental results show that SVM – POLY, with a gamma value of 0.005, regularisation value of 0.1 and degree value of 1, come out with the best performance compared to a default value of SVM – POLY. The study is significant towards educational data mining in analysing the students’ performance during online students’ activities.","PeriodicalId":470905,"journal":{"name":"Journal of electrical and electronic systems research","volume":"58 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrical and electronic systems research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jeesr.v23i1.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
—The increasing usage of classification algorithms has encouraged researchers to explore many topics, including academic-related topics. In addition, the availability of data from various academic information management systems in recent years has been increasing, causing classification to become a technique that is in demand by educational institutes. Thereby, having a classification technique is important in researching the data on students’ performance. The purpose of this study is to classify students’ performance by using a polynomial kernel of Support Vector Machine (SVM) on online students’ activities. A new dataset is proposed in this study, which consists of academic and student online behaviours that influence the students’ performance. The proposed dataset also undergoes pre-processing stage to improve the accuracy and identify the significance of the proposed features. The experiment for SVM-POLY classification performance was set with a range of values on the parameters to be optimised by an optimisation algorithm, Grid Search. Classification accuracy, Precision, Recall and f1-score were applied to observe the result and determine the best classifier performance. The experimental results show that SVM – POLY, with a gamma value of 0.005, regularisation value of 0.1 and degree value of 1, come out with the best performance compared to a default value of SVM – POLY. The study is significant towards educational data mining in analysing the students’ performance during online students’ activities.