A search strategy for publications in interdisciplinary research

IF 2.6 4区 管理学 Q1 COMMUNICATION
Wenjing Xiong, Ping Zhou
{"title":"A search strategy for publications in interdisciplinary research","authors":"Wenjing Xiong, Ping Zhou","doi":"10.3145/epi.2023.sep.22","DOIUrl":null,"url":null,"abstract":"To retrieve the right collection of publications in interdisciplinary research, we have developed a search strategy with four progressive steps and take the area of public affairs (PA) as a case study. A set of seed publications in PA is first identified, followed by the construction of a pool set of publications with wider coverage for refinement in the next step, which is critical and in which an expanded set of publications is established on the basis of the references and text semantic information, thus generating two respective subsets. One of these subsets is obtained on the basis of the number of references shared between each publication pair between the seed set and the pool set. To optimize the results, we construct two models, viz. a support vector machine (SVM) and a fully connected neural network (FCNN), and find that the FCNN model outperforms the SVM model. The second subset of publications are collected by selecting the publications with high topic similarity to the seed publications collected in the first step. The final step is to integrate the seed publications with the expanded publications collected in steps 1 and 3. The results show that PA research involves an extremely wide range of disciplines (n = 45), among which public administration, environmental sciences, economics, management, and health policy and services, among others, play the most significant roles.","PeriodicalId":20684,"journal":{"name":"Profesional De La Informacion","volume":"15 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Profesional De La Informacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3145/epi.2023.sep.22","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

Abstract

To retrieve the right collection of publications in interdisciplinary research, we have developed a search strategy with four progressive steps and take the area of public affairs (PA) as a case study. A set of seed publications in PA is first identified, followed by the construction of a pool set of publications with wider coverage for refinement in the next step, which is critical and in which an expanded set of publications is established on the basis of the references and text semantic information, thus generating two respective subsets. One of these subsets is obtained on the basis of the number of references shared between each publication pair between the seed set and the pool set. To optimize the results, we construct two models, viz. a support vector machine (SVM) and a fully connected neural network (FCNN), and find that the FCNN model outperforms the SVM model. The second subset of publications are collected by selecting the publications with high topic similarity to the seed publications collected in the first step. The final step is to integrate the seed publications with the expanded publications collected in steps 1 and 3. The results show that PA research involves an extremely wide range of disciplines (n = 45), among which public administration, environmental sciences, economics, management, and health policy and services, among others, play the most significant roles.
跨学科研究出版物的检索策略
为了检索跨学科研究中正确的出版物集合,我们制定了一个包含四个渐进步骤的搜索策略,并以公共事务领域(PA)为例进行了研究。首先确定PA中的一组种子出版物,然后构建一个覆盖范围更广的出版物池集,以便在下一步进行细化,这是至关重要的,其中在参考文献和文本语义信息的基础上建立一个扩展的出版物集,从而产生两个各自的子集。其中一个子集是根据种子集和池集之间的每个发布对之间共享的引用数量获得的。为了优化结果,我们构建了支持向量机(SVM)和全连接神经网络(FCNN)两个模型,并发现FCNN模型优于SVM模型。通过选择与第一步收集的种子出版物主题相似度高的出版物来收集出版物的第二个子集。最后一步是将种子出版物与步骤1和步骤3中收集的扩展出版物集成在一起。结果表明,PA研究涉及的学科范围非常广泛(n = 45),其中公共管理、环境科学、经济学、管理学和卫生政策与服务等学科发挥了最重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
9.50%
发文量
109
期刊介绍: El profesional de la información es una revista sobre información, bibliotecas y nuevas tecnologías de la información. Primera revista española de Biblioteconomía y Documentación indexada por las dos bases de datos bibliográficas internacionales más importantes: ISI Social Science Citation Index y Scopus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信