{"title":"Pairwise Regression Weight Contrasts: Models for Allocating Psychological Resources","authors":"Mark L. Davison, Hao Jia, Ernest C. Davenport","doi":"10.3102/10769986231200155","DOIUrl":null,"url":null,"abstract":"Researchers examine contrasts between analysis of variance (ANOVA) effects but seldom contrasts between regression coefficients even though such coefficients are an ANOVA generalization. Regression weight contrasts can be analyzed by reparameterizing the linear model. Two pairwise contrast models are developed for the study of qualitative differences among predictors. One leads to tests of null hypotheses that the regression weight for a reference predictor equals each of the other weights. The second involves ordered predictors and null hypotheses that the weight for a predictor equals that for the variables just above or below in the ordering. As illustration, qualitative differences in high school math course content are related to math achievement. The models facilitate the study of qualitative differences among predictors and the allocation of resources. They also readily generalize to moderated, hierarchical, and generalized linear forms.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"73 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3102/10769986231200155","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers examine contrasts between analysis of variance (ANOVA) effects but seldom contrasts between regression coefficients even though such coefficients are an ANOVA generalization. Regression weight contrasts can be analyzed by reparameterizing the linear model. Two pairwise contrast models are developed for the study of qualitative differences among predictors. One leads to tests of null hypotheses that the regression weight for a reference predictor equals each of the other weights. The second involves ordered predictors and null hypotheses that the weight for a predictor equals that for the variables just above or below in the ordering. As illustration, qualitative differences in high school math course content are related to math achievement. The models facilitate the study of qualitative differences among predictors and the allocation of resources. They also readily generalize to moderated, hierarchical, and generalized linear forms.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.