Free vibration and buckling response of functionally graded triply periodic minimal surface beams considering neutral axis dislocation

Q3 Physics and Astronomy
Mithilesh Kurup, Jeyaraj Pitchaimani
{"title":"Free vibration and buckling response of functionally graded triply periodic minimal surface beams considering neutral axis dislocation","authors":"Mithilesh Kurup, Jeyaraj Pitchaimani","doi":"10.1177/09574565231203254","DOIUrl":null,"url":null,"abstract":"The work pioneers a novel investigation into the free vibration and buckling behavior of triply periodic minimal surface beams, characterized by diverse distribution profiles. Using Euler-Bernoulli theory, under various boundary conditions, the investigation is carried out on four TPMS (Triply Periodic Minimal Surface) patterns, mainly gyroid, primitive, diamond and IWP (I-graph-wrapped package). The neutral axis would not coincide with the geometric center of the functionally graded beams so the neutral shift effect is taken into consideration appropriately. Governing differential equations are derived and the solutions are obtained numerically using the Ritz method. The mode shapes have also been calculated. It can be concluded that the type of pattern and distribution profile, boundary conditions, grade and neutral axis shift effect play a vital role in the prediction of vibration and buckling properties.","PeriodicalId":55888,"journal":{"name":"Noise and Vibration Worldwide","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise and Vibration Worldwide","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09574565231203254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The work pioneers a novel investigation into the free vibration and buckling behavior of triply periodic minimal surface beams, characterized by diverse distribution profiles. Using Euler-Bernoulli theory, under various boundary conditions, the investigation is carried out on four TPMS (Triply Periodic Minimal Surface) patterns, mainly gyroid, primitive, diamond and IWP (I-graph-wrapped package). The neutral axis would not coincide with the geometric center of the functionally graded beams so the neutral shift effect is taken into consideration appropriately. Governing differential equations are derived and the solutions are obtained numerically using the Ritz method. The mode shapes have also been calculated. It can be concluded that the type of pattern and distribution profile, boundary conditions, grade and neutral axis shift effect play a vital role in the prediction of vibration and buckling properties.
考虑中性轴位错的功能梯度三周期最小面梁的自由振动和屈曲响应
这项工作开创了对具有不同分布特征的三周期最小表面梁的自由振动和屈曲行为的新研究。利用欧拉-伯努利理论,在不同的边界条件下,对四种三周期极小表面(TPMS)模式进行了研究,主要是陀螺、原始、金刚石和I-graph-wrapped package (IWP)。由于中性轴与功能梯度梁的几何中心不重合,因此适当考虑了中性位移效应。推导了控制微分方程,并采用里兹法进行了数值求解。对模态振型也进行了计算。结果表明,模式的类型和分布轮廓、边界条件、等级和中性轴位移效应对振动和屈曲性能的预测起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Noise and Vibration Worldwide
Noise and Vibration Worldwide Physics and Astronomy-Acoustics and Ultrasonics
CiteScore
1.90
自引率
0.00%
发文量
34
期刊介绍: Noise & Vibration Worldwide (NVWW) is the WORLD"S LEADING MAGAZINE on all aspects of the cause, effect, measurement, acceptable levels and methods of control of noise and vibration, keeping you up-to-date on all the latest developments and applications in noise and vibration control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信