The Falsificationist View of Machine Learning

IF 0.7 4区 管理学 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
Patrik Reizinger
{"title":"The Falsificationist View of Machine Learning","authors":"Patrik Reizinger","doi":"10.22503/inftars.xxiii.2023.2.7","DOIUrl":null,"url":null,"abstract":"Machine learning pushes the frontiers of algorithmic achievements, though the striving for state-of-the-art performance often obscures the fragility of enforcing decisions amid uncertainty. This paper interprets machine learning within Karl Popper’s epistemology. We assess machine learning paradigms’ fit for falsificationism and argue that the new interpretation can improve robustness. Though the price is to accept unambiguous decisions, the restriction of the hypothesis space still adds value. The context for our work is established by comparison with similar techniques and highlighting its limitations.","PeriodicalId":41114,"journal":{"name":"Informacios Tarsadalom","volume":"358 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacios Tarsadalom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22503/inftars.xxiii.2023.2.7","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning pushes the frontiers of algorithmic achievements, though the striving for state-of-the-art performance often obscures the fragility of enforcing decisions amid uncertainty. This paper interprets machine learning within Karl Popper’s epistemology. We assess machine learning paradigms’ fit for falsificationism and argue that the new interpretation can improve robustness. Though the price is to accept unambiguous decisions, the restriction of the hypothesis space still adds value. The context for our work is established by comparison with similar techniques and highlighting its limitations.
机器学习的证伪主义观点
机器学习推动了算法成就的前沿,尽管对最先进性能的追求往往掩盖了在不确定性中执行决策的脆弱性。本文在卡尔·波普尔的认识论中解释机器学习。我们评估了机器学习范式是否适合证伪主义,并认为新的解释可以提高鲁棒性。虽然代价是接受明确的决策,但假设空间的限制仍然增加了价值。我们的工作背景是通过与类似技术的比较和突出其局限性来建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informacios Tarsadalom
Informacios Tarsadalom INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.30
自引率
33.30%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信